Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21093, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473939

RESUMO

Premature leaf senescence negatively influences the physiology and yield of cotton plants. The conserved IDLNL sequence in the C-terminal region of AGL42 MADS-box determines its repressor potential for the down regulation of senescence-related genes. To determine the delay in premature leaf senescence, Arabidopsis AGL42 gene was overexpressed in cotton plants. The absolute quantification of transgenic cotton plants revealed higher mRNA expression of AGL42 compared to that of the non-transgenic control. The spatial expression of GUS fused with AGL42 and the mRNA level was highest in the petals, abscission zone (flower and bud), 8 days post anthesis (DPA) fiber, fresh mature leaves, and senescenced leaves. The mRNA levels of different NAC senescence-promoting genes were significantly downregulated in AGL42 transgenic cotton lines than those in the non-transgenic control. The photosynthetic rate and chlorophyll content were higher in AGL42 transgenic cotton lines than those in the non-transgenic control. Fluorescence in situ hybridization of the AG3 transgenic cotton line revealed a fluorescent signal on chromosome 1 in the hemizygous form. Moreover, the average number of bolls in the transgenic cotton lines was significantly higher than that in the non-transgenic control because of the higher retention of floral buds and squares, which has the potential to improve cotton fiber yield.


Assuntos
Gossypium , Fatores de Transcrição , Gossypium/genética , Regulação para Baixo , Fatores de Transcrição/genética , Hibridização in Situ Fluorescente , Senescência Vegetal , RNA Mensageiro
2.
Curr Microbiol ; 75(12): 1675-1683, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30078067

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR or more precisely CRISPR-Cas) system has proven to be a highly efficient and simple tool for achieving site-specific genome modifications in comparison to Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs). The discovery of bacterial defense system that uses RNA-guided DNA cleaving enzymes for producing double-strand breaks along CRISPR has provided an exciting alternative to ZFNs and TALENs for gene editing & regulation, as the CRISPR-associated (Cas) proteins remain the same for different gene targets and only the short sequence of the guide RNA needs to be changed to redirect the site-specific cleavage. Therefore, in recent years the CRISPR-Cas system has emerged as a revolutionary engineering tool for carrying out precise and controlled genetic modifications in many microbes such as Escherichia coli, Staphylococcus aureus, Lactobacillus reuteri, Clostridium beijerinckii, Streptococcus pneumonia, and Saccharomyces cerevisiae. Though, concerns about CRISPR-Cas effectiveness in interlinked gene modifications and off-target effects need to be addressed. Nevertheless, it holds a great potential to speed up the pace of gene function discovery by interacting with previously intractable organisms and by raising the extent of genetic screens. Therefore, the potential applications of this system in microbial adaptive immune system, genome editing, gene regulations, functional genomics & biosynthesis along ethical issues, and possible harmful effects have been reviewed.


Assuntos
Bactérias/genética , Sistemas CRISPR-Cas/genética , Genoma/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Humanos
3.
Front Plant Sci ; 6: 1081, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697037

RESUMO

Study and research of Bt (Bacillus thuringiensis) transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac) insecticidal protein and vegetative insecticidal protein (Vip3Aa) have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN) and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua, and Spodoptera litura) revealed that the Ser290, Ser293, Leu337, Thr340, and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein.

4.
Analyst ; 138(19): 5654-64, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23928799

RESUMO

Microfluidic technologies provide an attractive platform for the synthesis of radiolabeled compounds. Visualization of radioisotopes on chip is critical for synthesis optimization and technological development. With Cerenkov imaging, beta particle emitting isotopes can be localized with a sensitive CCD camera. In order for Cerenkov imaging to also serve as a quantitative tool, it is necessary to understand how material properties relevant to Cerenkov emission, namely, index of refraction and beta particle stopping power, affect Cerenkov light output. In this report, we investigate the fundamental physical characteristics of Cerenkov photon yield at different stages of [(18)F]FDG synthesis on the electrowetting on dielectric (EWOD) microfluidic platform. We also demonstrate how Cerenkov imaging has enabled synthesis optimization. Geant4, a Monte Carlo program applied extensively in high energy physics, is used to simulate Cerenkov photon yield from (18)F beta particles traversing materials of interest during [(18)F]FDG synthesis on chip. Our simulations show that the majority (approximately two-thirds) of the (18)F beta particle energy available to produce Cerenkov photons is deposited on the glass plates of the EWOD chip. This result suggests the possibility of using a single calibration factor to convert Cerenkov signal to radioactivity, independent of droplet composition. We validate our simulations with a controlled measurement examining varying ratios of [(18)O]H2O, dimethyl sulfoxide (DMSO), and acetonitrile (MeCN), and find a consistent calibration independent of solvent composition. However, the calibration factor may underestimate the radioactivity in actual synthesis due to discoloration of the droplet during certain steps of probe synthesis. In addition to the attractive quantitative potential of Cerenkov imaging, this imaging strategy provides indispensable qualitative data to guide synthesis optimization. We are able to use this imaging technique to optimize the mixing protocol as well as identify and correct for loss of radioactivity due to the migration of radioactive vapor outside of the EWOD heater, enabling an overall increase in the crude radiochemical yield from 50 ± 3% (n = 3) to 72 ± 13% (n = 5).


Assuntos
Fluordesoxiglucose F18/análise , Microfluídica/métodos , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Fluordesoxiglucose F18/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA