Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 14(1): 1333, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228772

RESUMO

In previous studies, replicated and multiple types of speech data have been used for Parkinson's disease (PD) detection. However, two main problems in these studies are lower PD detection accuracy and inappropriate validation methodologies leading to unreliable results. This study discusses the effects of inappropriate validation methodologies used in previous studies and highlights the use of appropriate alternative validation methods that would ensure generalization. To enhance PD detection accuracy, we propose a two-stage diagnostic system that refines the extracted set of features through [Formula: see text] regularized linear support vector machine and classifies the refined subset of features through a deep neural network. To rigorously evaluate the effectiveness of the proposed diagnostic system, experiments are performed on two different voice recording-based benchmark datasets. For both datasets, the proposed diagnostic system achieves 100% accuracy under leave-one-subject-out (LOSO) cross-validation (CV) and 97.5% accuracy under k-fold CV. The results show that the proposed system outperforms the existing methods regarding PD detection accuracy. The results suggest that the proposed diagnostic system is essential to improving non-invasive diagnostic decision support in PD.


Assuntos
Doença de Parkinson , Voz , Humanos , Algoritmos , Doença de Parkinson/diagnóstico , Máquina de Vetores de Suporte , Redes Neurais de Computação
2.
Biomedicines ; 11(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36830975

RESUMO

Dementia is a cognitive disorder that mainly targets older adults. At present, dementia has no cure or prevention available. Scientists found that dementia symptoms might emerge as early as ten years before the onset of real disease. As a result, machine learning (ML) scientists developed various techniques for the early prediction of dementia using dementia symptoms. However, these methods have fundamental limitations, such as low accuracy and bias in machine learning (ML) models. To resolve the issue of bias in the proposed ML model, we deployed the adaptive synthetic sampling (ADASYN) technique, and to improve accuracy, we have proposed novel feature extraction techniques, namely, feature extraction battery (FEB) and optimized support vector machine (SVM) using radical basis function (rbf) for the classification of the disease. The hyperparameters of SVM are calibrated by employing the grid search approach. It is evident from the experimental results that the newly pr oposed model (FEB-SVM) improves the dementia prediction accuracy of the conventional SVM by 6%. The proposed model (FEB-SVM) obtained 98.28% accuracy on training data and a testing accuracy of 93.92%. Along with accuracy, the proposed model obtained a precision of 91.80%, recall of 86.59, F1-score of 89.12%, and Matthew's correlation coefficient (MCC) of 0.4987. Moreover, the newly proposed model (FEB-SVM) outperforms the 12 state-of-the-art ML models that the researchers have recently presented for dementia prediction.

3.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850744

RESUMO

Lung cancer is one of the most common causes of cancer deaths in the modern world. Screening of lung nodules is essential for early recognition to facilitate treatment that improves the rate of patient rehabilitation. An increase in accuracy during lung cancer detection is vital for sustaining the rate of patient persistence, even though several research works have been conducted in this research domain. Moreover, the classical system fails to segment cancer cells of different sizes accurately and with excellent reliability. This paper proposes a sooty tern optimization algorithm-based deep learning (DL) model for diagnosing non-small cell lung cancer (NSCLC) tumours with increased accuracy. We discuss various algorithms for diagnosing models that adopt the Otsu segmentation method to perfectly isolate the lung nodules. Then, the sooty tern optimization algorithm (SHOA) is adopted for partitioning the cancer nodules by defining the best characteristics, which aids in improving diagnostic accuracy. It further utilizes a local binary pattern (LBP) for determining appropriate feature retrieval from the lung nodules. In addition, it adopts CNN and GRU-based classifiers for identifying whether the lung nodules are malignant or non-malignant depending on the features retrieved during the diagnosing process. The experimental results of this SHOA-optimized DNN model achieved an accuracy of 98.32%, better than the baseline schemes used for comparison.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Charadriiformes , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Reprodutibilidade dos Testes , Neoplasias Pulmonares/diagnóstico , Algoritmos
4.
J Med Syst ; 47(1): 17, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720727

RESUMO

Nowadays, Artificial Intelligence (AI) and machine learning (ML) have successfully provided automated solutions to numerous real-world problems. Healthcare is one of the most important research areas for ML researchers, with the aim of developing automated disease prediction systems. One of the disease detection problems that AI and ML researchers have focused on is dementia detection using ML methods. Numerous automated diagnostic systems based on ML techniques for early prediction of dementia have been proposed in the literature. Few systematic literature reviews (SLR) have been conducted for dementia prediction based on ML techniques in the past. However, these SLR focused on a single type of data modality for the detection of dementia. Hence, the purpose of this study is to conduct a comprehensive evaluation of ML-based automated diagnostic systems considering different types of data modalities such as images, clinical-features, and voice data. We collected the research articles from 2011 to 2022 using the keywords dementia, machine learning, feature selection, data modalities, and automated diagnostic systems. The selected articles were critically analyzed and discussed. It was observed that image data driven ML models yields promising results in terms of dementia prediction compared to other data modalities, i.e., clinical feature-based data and voice data. Furthermore, this SLR highlighted the limitations of the previously proposed automated methods for dementia and presented future directions to overcome these limitations.


Assuntos
Demência , Voz , Humanos , Inteligência Artificial , Aprendizado de Máquina , Demência/diagnóstico
5.
Front Bioeng Biotechnol ; 11: 1336255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260734

RESUMO

Introduction: Dementia is a condition (a collection of related signs and symptoms) that causes a continuing deterioration in cognitive function, and millions of people are impacted by dementia every year as the world population continues to rise. Conventional approaches for determining dementia rely primarily on clinical examinations, analyzing medical records, and administering cognitive and neuropsychological testing. However, these methods are time-consuming and costly in terms of treatment. Therefore, this study aims to present a noninvasive method for the early prediction of dementia so that preventive steps should be taken to avoid dementia. Methods: We developed a hybrid diagnostic system based on statistical and machine learning (ML) methods that used patient electronic health records to predict dementia. The dataset used for this study was obtained from the Swedish National Study on Aging and Care (SNAC), with a sample size of 43040 and 75 features. The newly constructed diagnostic extracts a subset of useful features from the dataset through a statistical method (F-score). For the classification, we developed an ensemble voting classifier based on five different ML models: decision tree (DT), naive Bayes (NB), logistic regression (LR), support vector machines (SVM), and random forest (RF). To address the problem of ML model overfitting, we used a cross-validation approach to evaluate the performance of the proposed diagnostic system. Various assessment measures, such as accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve, and Matthew's correlation coefficient (MCC), were used to thoroughly validate the devised diagnostic system's efficiency. Results: According to the experimental results, the proposed diagnostic method achieved the best accuracy of 98.25%, as well as sensitivity of 97.44%, specificity of 95.744%, and MCC of 0.7535. Discussion: The effectiveness of the proposed diagnostic approach is compared to various cutting-edge feature selection techniques and baseline ML models. From experimental results, it is evident that the proposed diagnostic system outperformed the prior feature selection strategies and baseline ML models regarding accuracy.

6.
Life (Basel) ; 12(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888188

RESUMO

Dementia is a neurological condition that primarily affects older adults and there is still no cure or therapy available to cure it. The symptoms of dementia can appear as early as 10 years before the beginning of actual diagnosed dementia. Hence, machine learning (ML) researchers have presented several methods for early detection of dementia based on symptoms. However, these techniques suffer from two major flaws. The first issue is the bias of ML models caused by imbalanced classes in the dataset. Past research did not address this issue well and did not take preventative precautions. Different ML models were developed to illustrate this bias. To alleviate the problem of bias, we deployed a synthetic minority oversampling technique (SMOTE) to balance the training process of the proposed ML model. The second issue is the poor classification accuracy of ML models, which leads to a limited clinical significance. To improve dementia prediction accuracy, we proposed an intelligent learning system that is a hybrid of an autoencoder and adaptive boost model. The autoencoder is used to extract relevant features from the feature space and the Adaboost model is deployed for the classification of dementia by using an extracted subset of features. The hyperparameters of the Adaboost model are fine-tuned using a grid search algorithm. Experimental findings reveal that the suggested learning system outperforms eleven similar systems which were proposed in the literature. Furthermore, it was also observed that the proposed learning system improves the strength of the conventional Adaboost model by 9.8% and reduces its time complexity. Lastly, the proposed learning system achieved classification accuracy of 90.23%, sensitivity of 98.00% and specificity of 96.65%.

7.
Comput Intell Neurosci ; 2022: 1901735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707186

RESUMO

Nowadays, caesarean section (CS) is given preference over vaginal birth and this trend is rapidly rising around the globe, although CS has serious complications such as pregnancy scar, scar dehiscence, and morbidly adherent placenta. Thus, CS should only be performed when it is absolutely necessary for mother and fetus. To avoid unnecessary CS, researchers have developed different machine-learning- (ML-) based clinical decision support systems (CDSS) for CS prediction using electronic health record of the pregnant women. However, previously proposed methods suffer from the problems of poor accuracy and biasedness in ML. To overcome these problems, we have designed a novel CDSS where random oversampling example (ROSE) technique has been used to eliminate the problem of minority classes in the dataset. Furthermore, principal component analysis has been employed for feature extraction from the dataset while, for classification purpose, random forest (RF) model is deployed. We have fine-tuned the hyperparameter of RF using a grid search algorithm for optimal classification performance. Thus, the newly proposed system is named ROSE-PCA-RF and it is trained and tested using an online CS dataset available on the UCI repository. In the first experiment, conventional RF model is trained and tested on the dataset while in the second experiment, the proposed model is tested. The proposed ROSE-PCA-RF model improved the performance of traditional RF by 4.5% with reduced time complexity, while only using two extracted features through the PCA. Moreover, the proposed model has obtained 96.29% accuracy on training data while improving the accuracy of 97.12% on testing data.


Assuntos
Cesárea , Sistemas de Apoio a Decisões Clínicas , Algoritmos , Cicatriz , Feminino , Humanos , Aprendizado de Máquina , Gravidez
8.
Comput Math Methods Med ; 2022: 9288452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154361

RESUMO

One of the leading causes of deaths around the globe is heart disease. Heart is an organ that is responsible for the supply of blood to each part of the body. Coronary artery disease (CAD) and chronic heart failure (CHF) often lead to heart attack. Traditional medical procedures (angiography) for the diagnosis of heart disease have higher cost as well as serious health concerns. Therefore, researchers have developed various automated diagnostic systems based on machine learning (ML) and data mining techniques. ML-based automated diagnostic systems provide an affordable, efficient, and reliable solutions for heart disease detection. Various ML, data mining methods, and data modalities have been utilized in the past. Many previous review papers have presented systematic reviews based on one type of data modality. This study, therefore, targets systematic review of automated diagnosis for heart disease prediction based on different types of modalities, i.e., clinical feature-based data modality, images, and ECG. Moreover, this paper critically evaluates the previous methods and presents the limitations in these methods. Finally, the article provides some future research directions in the domain of automated heart disease detection based on machine learning and multiple of data modalities.


Assuntos
Diagnóstico por Computador/métodos , Insuficiência Cardíaca/diagnóstico , Aprendizado de Máquina , Algoritmos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/diagnóstico por imagem , Biologia Computacional , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/diagnóstico por imagem , Mineração de Dados/estatística & dados numéricos , Bases de Dados Factuais/estatística & dados numéricos , Diagnóstico por Computador/estatística & dados numéricos , Diagnóstico por Computador/tendências , Eletrocardiografia/estatística & dados numéricos , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Aprendizado de Máquina/tendências , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA