Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1441: 481-493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884727

RESUMO

The relative simplicity of the clinical presentation and management of an atrial septal defect belies the complexity of the developmental pathogenesis. Here, we describe the anatomic development of the atrial septum and the venous return to the atrial chambers. Experimental models suggest how mutations and naturally occurring genetic variation could affect developmental steps to cause a defect within the oval fossa, the so-called secundum defect, or other interatrial communications, such as the sinus venosus defect or ostium primum defect.


Assuntos
Modelos Animais de Doenças , Comunicação Interatrial , Comunicação Interatrial/genética , Comunicação Interatrial/patologia , Comunicação Interatrial/fisiopatologia , Animais , Humanos , Mutação , Septo Interatrial/patologia , Transdução de Sinais/genética
2.
Int. j. cardiovasc. sci. (Impr.) ; 35(5): 665-675, Sept.-Oct. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1405193

RESUMO

Abstract Therapeutics that inhibit enzymes, receptors, ion channels, and cotransporters have long been the mainstay of cardiovascular medicine. Now, oligonucleotide therapeutics offer a modern variation on this paradigm of protein inhibition. Rather than target a protein, however, small interfering ribonucleic acids and antisense oligonucleotides target the messenger RNA (mRNA) from which a protein is translated. Endogenous, cellular mechanisms enable the oligonucleotides to bind a selected sequence on a target mRNA, leading to its degradation. The catalytic nature of the process confers an advantage over the stoichiometric binding of traditional small molecule therapeutics to their respective protein targets. Advances in nucleic acid chemistry and delivery have enabled development of oligonucleotide therapeutics against a wide range of diseases, including hyperlipidemias and hereditary transthyretin-mediated amyloidosis with polyneuropathy. While most of these therapeutics were initially designed for rare diseases, recent clinical trials highlight the potential impact of oligonucleotides on more common forms of cardiovascular disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA