Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Mater Au ; 2(3): 293-300, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36855378

RESUMO

A dual purpose solid state electrochromic diode has been fabricated using polythiophene (P3HT) and ethyl Viologen (EV), predoped with multiwalled carbon nanotubes (MWCNTs) and MoS2. The device has been designed by considering two important aspects, first, the complementary redox activity of P3HT and EV and second, the electron holding properties of MoS2 and MWCNTs. The latter is found to enhance the electrochromic performance of the solid state device. On the other hand, the complementary redox nature gives the asymmetric diodic I-V characteristic to the device which has been exploited to use the electrochromic device for rectification application. The MoS2 nanoflower and MWCNTs are synthesized by one-step hydrothermal and pyrolysis techniques and well characterized by scanning electron microscopy (SEM), X-ray analysis (XRD), and Raman spectroscopy. Electrochromic properties of the device have been studied in detail to reveal an improvement in device performance in terms of faster speed and high coloration efficiency and color contrast. In situ bias-dependent Raman spectroscopy has been performed to understand the operation mechanism of the electrochromic diode which reveals (bi-)polaron formation as a result of dynamic doping eventually leading to color change. A half-wave rectifier has been realized from the electrochromic diode which rectifies an AC voltage of frequency 1 Hz or less making it suitable for low frequency operation. The study opens a new possibility to design and fabricate multipurpose frequency selective electrochromic rectifiers.

2.
ACS Chem Neurosci ; 12(20): 3957-3967, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609141

RESUMO

The neurotropic potential of the Epstein-Barr virus (EBV) was demonstrated quite recently; however, the mechanistic details are yet to be explored. Therefore, the effects of EBV infection in the neural milieu remain underexplored. Previous reports have suggested the potential role of virus-derived peptides in seeding the amyloid-ß aggregation cascade, which lies at the center of Alzheimer's disease (AD) pathophysiology. However, no such study has been undertaken to explore the role of EBV peptides in AD. In our research, ∼100 EBV proteins were analyzed for their aggregation proclivity in silico using bioinformatic tools, followed by the prediction of 20S proteasomal cleavage sites using online algorithms NetChop ver. 3.1 and Pcleavage, thereby mimicking the cellular proteasomal cleavage activity generating short antigenic peptides of viral origin. Our study reports a high aggregate-forming tendency of a 12-amino-acid-long (146SYKHVFLSAFVY157) peptide derived from EBV glycoprotein M (EBV-gM). The in vitro analysis of aggregate formation done using Congo red and Thioflavin-S assays demonstrated dose- and time-dependent kinetics. Thereafter, Raman spectroscopy was used to validate the formation of secondary structures (α helix, ß sheets) in the aggregates. Additionally, cytotoxicity assay revealed that even a low concentration of these aggregates has a lethal effect on neuroblastoma cells. The findings of this study provide insights into the mechanistic role of EBV in AD and open up new avenues to explore in the future.


Assuntos
Doença de Alzheimer , Infecções por Vírus Epstein-Barr , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Herpesvirus Humano 4 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA