Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(5): 2328-2340, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37261844

RESUMO

Almost a billion people worldwide suffer from neurological disorders, which pose public health challenges. An important enzyme that is well-known for many neurodegenerative illnesses is monoamine oxidase (MAO). Although several promising drugs for the treatment of MAO inhibition have recently been examined, it is still necessary to identify the precise structural requirements for robust efficacy. Atom-based, field-based, and GA-MLR (genetic algorithm multiple linear regression) models were created for this investigation. All of the models have strong statistical (R2 and Q2) foundations because of both internal and external validation. Our dataset's molecule has a higher docking score than safinamide, a well-known and co-crystallized MAO-B inhibitor, as we also noticed. Using the SwissSimilarity platform, we further inquired which of our docked molecules would be the best for screening. We chose ZINC000016952895 as the screen molecule with the best binding docking score (XP score = -13.3613). Finally, the 100 ns for the ZINC000016952895-MAO-B complex in our MD investigations is stable. For compounds that we hit, also anticipate ADME properties. Our research revealed that the successful compound ZINC000016952895 might pave the way for the future development of MAO inhibitors for the treatment of neurological disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Isatina , Doenças Neurodegenerativas , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/metabolismo , Relação Quantitativa Estrutura-Atividade , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Doenças Neurodegenerativas/tratamento farmacológico , Relação Estrutura-Atividade
2.
ACS Omega ; 8(47): 44437-44457, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046293

RESUMO

Click chemistry is a set of easy, atom-economical reactions that are often utilized to combine two desired chemical entities. Click chemistry accelerates lead identification and optimization, reduces the complexity of chemical synthesis, and delivers extremely high yields without undesirable byproducts. The most well-known click chemistry reaction is the 1,3-dipolar cycloaddition of azides and alkynes to form 1,2,3-triazoles. The resulting 1,2,3-triazoles can serve as both bioisosteres and linkers, leading to an increase in their use in the field of drug discovery. The current Review focuses on the use of click chemistry to identify new molecules for treating neurodegenerative diseases and in other areas such as peptide targeting and the quantification of biomolecules.

3.
ACS Omega ; 8(50): 47606-47615, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144071

RESUMO

A total of 14 acyl hydrazine derivatives (ACH1-ACH14) were developed and examined for their ability to block monoamine oxidase (MAO). Thirteen analogues showed stronger inhibition potency against MAO-B than MAO-A. With a half-maximum inhibitory concentration of 0.14 µM, ACH10 demonstrated the strongest inhibitory activity against MAO-B, followed by ACH14, ACH13, ACH8, and ACH3 (IC50 = 0.15, 0.18, 0.20, and 0.22 µM, respectively). Structure-activity relationships suggested that the inhibition effect on MAO-B resulted from the combination of halogen substituents of the A- and/or B-rings. This series concluded that when -F was substituted to the B-ring, MAO-B inhibitory activities were high, except for ACH6. In the inhibition kinetics study, the compounds ACH10 and ACH14 were identified as competitive inhibitors, with Ki values of 0.097 ± 0.0021 and 0.10 ± 0.038 µM, respectively. In a reversibility experiment using the dialysis methods, ACH10 and ACH14 showed effective recoveries of MAO-B inhibition as much as lazabemide, a reversible reference. These experiments proposed that ACH10 and ACH14 were efficient, reversible competitive MAO-B inhibitors. In addition, the lead molecules showed good blood-brain barrier permeation with the PAMPA method. The molecular docking and molecular dynamics simulation study confirmed that the hit compound ACH10 can form a stable protein-ligand complex by forming a hydrogen bond with the NH atom in the hydrazide group of the compound.

4.
ACS Omega ; 8(41): 37731-37751, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867639

RESUMO

The monoamine oxidase enzyme (MAO), which is bound on the membrane of mitochondria, catalyzes the oxidative deamination of endogenous and exogenous monoamines, including monoamine neurotransmitters such as serotonin, adrenaline, and dopamine. These enzymes have been proven to play a significant role in neurodegeneration; thus, they have recently been researched as prospective therapeutic targets for neurodegenerative illness treatment and management. MAO inhibitors have already been marketed as neurodegeneration illness treatments despite their substantial side effects. Hence, researchers are concentrating on developing novel molecules with selective and reversible inhibitory properties. Piperine, which is a phytochemical component present in black pepper, has been established as a potent MAO inhibitor. Piperine encompasses a piperidine nucleus with antibacterial, anti-inflammatory, antihypertensive, anticonvulsant, antimalarial, antiviral, and anticancer properties. The current Review focuses on the structural changes and structure-activity relationships of piperidine derivatives as MAO inhibitors.

5.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765118

RESUMO

Monoamine oxidases (MAOs) are a family of flavin adenine dinucleotide-dependent enzymes that catalyze the oxidative deamination of a wide range of endogenous and exogenous amines. Multiple neurological conditions, including Parkinson's disease (PD) and Alzheimer's disease (AD), are closely correlated with altered biogenic amine concentrations in the brain caused by MAO. Toxic byproducts of this oxidative breakdown, including hydrogen peroxide, reactive oxygen species, and ammonia, can cause oxidative damage and mitochondrial dysfunction in brain cells. Certain MAO-B blockers have been recognized as effective treatment options for managing neurological conditions, including AD and PD. There is still a pressing need to find potent therapeutic molecules to fight these disorders. However, the focus of neurodegeneration studies has recently increased, and certain compounds are now in clinical trials. Chromones are promising structures for developing therapeutic compounds, especially in neuronal degeneration. This review focuses on the MAO-B inhibitory potential of several synthesized chromones and their structural activity relationships. Concerning the discovery of a novel class of effective chromone-based selective MAO-B-inhibiting agents, this review offers readers a better understanding of the most recent additions to the literature.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37519205

RESUMO

Flavonoids and chalcones are two major classes of chemical moieties that have a vast background of pharmacological activities. Chalcone is a subclass of flavonoids whose therapeutic potential has been implicated due to an array of bioactivities. A lot of research works have shown interest in investigating the neuroprotective effect of these molecules, and have revealed them to be much more potent molecules that can be used to treat neurodegenerative disorders. Beta-site APP cleaving enzyme (BACE1), which is majorly found in the brain, is one of the reasons behind the development of Alzheimer's disease (AD). Flavonoids and chalcones have proven clinical data that they inhibit the production of Aß plaques that are involved in the progression of AD. In this article, we have provided a detailed chronological review of the research work on the BACE1 inhibiting potency of both flavonoids and chalcones. Almost all the flavonoids and chalcones mentioned in this article have shown very good in vitro and in vivo BACE1 inhibiting activity. The docking studies and the structural importance of some BACE1-inhibiting flavonoids, as well as chalcones, are also mentioned here.

7.
Arch Pharm (Weinheim) ; 356(7): e2300091, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37021551

RESUMO

As flavin adenine dinucleotide (FAD)-dependent enzymes, monoamine oxidases (MAOs) catalyze the oxidative deamination of various endogenous and exogenous amines. MAO-A inhibitors are thought to be effective therapeutic agents for treating neurological diseases including depression and anxiety. Due to the academic challenge of developing new human (h) MAO-A inhibitors and the potential for discovering substances with remarkable properties compared to existing MAO-A inhibitors, numerous research groups are looking into novel classes of chemical compounds that may function as selective hMAO-A inhibitors. ß-Carbolines are reported to be a prominent class of bioactive molecules exhibiting MAO-A inhibition. Chemically, ß-carboline is a tricyclic pyrido-3,4-indole ring. It has only recently been discovered that this chemotype has highly effective and specific MAO-A inhibitory activity. In this review, structure-activity relationship studies included in particular research publications from the 1960s to the present are discussed with regard to ß-carboline and its analogs. This comprehensive information helps to design and develop a new family of MAO-A inhibitors for the management of depressive disorders.


Assuntos
Inibidores da Monoaminoxidase , Monoaminoxidase , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade , Monoaminoxidase/metabolismo , Carbolinas/farmacologia , Carbolinas/química
8.
Environ Sci Pollut Res Int ; 29(58): 87068-87081, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308656

RESUMO

Good brain health refers to a condition in which a person may fully realize their talents and improve their psychological, emotional, cognitive, and behavioral functioning to cope with life's challenges. Various causes of CNS diseases are now being investigated. Radiation is one of the factors that affects the brain and causes a variety of problems. The emission or transmission of energy in the form of waves or particles via space or a material medium is known as radiation. Particle beams and electromagnetic waves are two types of ionizing radiation that have the potential to ionize atoms in a material (separating them into positively charged ions and negatively charged electrons). Radiation to the CNS can induce delayed puberty, which can lead to hyperprolactinemia, and the hypothalamic-pituitary axis can lead to gonadotropin deficit if the hypothalamic-pituitary axis is involved in the radiation field. Ionizing radiation is the most common kind of radiation. Here, we focus on the different effects of radiation on brain health. In this article, we will look at a variety of CNS diseases and how radiation affects each one, as well as how it affects the brain's numerous processes.


Assuntos
Exposição à Radiação , Humanos , Radiação Ionizante , Encéfalo , Íons , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA