Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS Genet ; 19(10): e1010986, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37812641

RESUMO

Extra-chromosomal selfish DNA elements can evade the risk of being lost at every generation by behaving as chromosome appendages, thereby ensuring high fidelity segregation and stable persistence in host cell populations. The yeast 2-micron plasmid and episomes of the mammalian gammaherpes and papilloma viruses that tether to chromosomes and segregate by hitchhiking on them exemplify this strategy. We document for the first time the utilization of a SWI/SNF-type chromatin remodeling complex as a conduit for chromosome association by a selfish element. One principal mechanism for chromosome tethering by the 2-micron plasmid is the bridging interaction of the plasmid partitioning proteins (Rep1 and Rep2) with the yeast RSC2 complex and the plasmid partitioning locus STB. We substantiate this model by multiple lines of evidence derived from genomics, cell biology and interaction analyses. We describe a Rep-STB bypass system in which a plasmid engineered to non-covalently associate with the RSC complex mimics segregation by chromosome hitchhiking. Given the ubiquitous prevalence of SWI/SNF family chromatin remodeling complexes among eukaryotes, it is likely that the 2-micron plasmid paradigm or analogous ones will be encountered among other eukaryotic selfish elements.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina/genética , Cromossomos/metabolismo , Plasmídeos/genética , Cromatina/genética , Cromatina/metabolismo , Mamíferos/genética
2.
Elife ; 102021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34435949

RESUMO

'Disintegration'-the reversal of transposon DNA integration at a target site-is regarded as an abortive off-pathway reaction. Here, we challenge this view with a biochemical investigation of the mechanism of protospacer insertion, which is mechanistically analogous to DNA transposition, by the Streptococcus pyogenes Cas1-Cas2 complex. In supercoiled target sites, the predominant outcome is the disintegration of one-ended insertions that fail to complete the second integration event. In linear target sites, one-ended insertions far outnumber complete protospacer insertions. The second insertion event is most often accompanied by the disintegration of the first, mediated either by the 3'-hydroxyl exposed during integration or by water. One-ended integration intermediates may mature into complete spacer insertions via DNA repair pathways that are also involved in transposon mobility. We propose that disintegration-promoted integration is functionally important in the adaptive phase of CRISPR-mediated bacterial immunity, and perhaps in other analogous transposition reactions.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/genética , Streptococcus pyogenes/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Endonucleases/metabolismo , Streptococcus pyogenes/metabolismo
3.
PLoS Genet ; 17(7): e1009660, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34270553

RESUMO

Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Plasmídeos/genética , Saccharomycetales/genética , Adenosina Trifosfatases/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , Centrômero/metabolismo , Segregação de Cromossomos/genética , Cromossomos/genética , Replicação do DNA/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/metabolismo , Complexos Multiproteicos/metabolismo , Plasmídeos/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo , Telômero/metabolismo , Transativadores/genética
4.
Nucleic Acids Res ; 48(12): 6413-6430, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479633

RESUMO

Streptomyces phage ϕC31 integrase (Int)-a large serine site-specific recombinase-is autonomous for phage integration (attP x attB recombination) but is dependent on the phage coded gp3, a recombination directionality factor (RDF), for prophage excision (attL x attR recombination). A previously described activating mutation, E449K, induces Int to perform attL x attR recombination in the absence of gp3, albeit with lower efficiency. E449K has no adverse effect on the competence of Int for attP x attB recombination. Int(E449K) resembles Int in gp3 mediated stimulation of attL x attR recombination and inhibition of attP x attB recombination. Using single-molecule analyses, we examined the mechanism by which E449K activates Int for gp3-independent attL x attR recombination. The contribution of E449K is both thermodynamic and kinetic. First, the mutation modulates the relative abundance of Int bound attL-attR site complexes, favoring pre-synaptic (PS) complexes over non-productively bound complexes. Roughly half of the synaptic complexes formed from Int(E449K) pre-synaptic complexes are recombination competent. By contrast, Int yields only inactive synapses. Second, E449K accelerates the dissociation of non-productively bound complexes and inactive synaptic complexes formed by Int. The extra opportunities afforded to Int(E499K) in reattempting synapse formation enhances the probability of success at fruitful synapsis.


Assuntos
Mutação com Ganho de Função , Integrases/metabolismo , Siphoviridae/enzimologia , Proteínas Virais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Integrases/química , Integrases/genética , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Recombinação Genética , Siphoviridae/genética , Proteínas Virais/química , Proteínas Virais/genética
5.
PLoS Genet ; 15(6): e1008193, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242181

RESUMO

Mechanisms for highly efficient chromosome-associated equal segregation, and for maintenance of steady state copy number, are at the heart of the evolutionary success of the 2-micron plasmid as a stable multi-copy extra-chromosomal selfish DNA element present in the yeast nucleus. The Flp site-specific recombination system housed by the plasmid, which is central to plasmid copy number maintenance, is regulated at multiple levels. Transcription of the FLP gene is fine-tuned by the repressor function of the plasmid-coded partitioning proteins Rep1 and Rep2 and their antagonist Raf1, which is also plasmid-coded. In addition, the Flp protein is regulated by the host's post-translational modification machinery. Utilizing a Flp-SUMO fusion protein, which functionally mimics naturally sumoylated Flp, we demonstrate that the modification signals ubiquitination of Flp, followed by its proteasome-mediated degradation. Furthermore, reduced binding affinity and cooperativity of the modified Flp decrease its association with the plasmid FRT (Flp recombination target) sites, and/or increase its dissociation from them. The resulting attenuation of strand cleavage and recombination events safeguards against runaway increase in plasmid copy number, which is deleterious to the host-and indirectly-to the plasmid. These results have broader relevance to potential mechanisms by which selfish genomes minimize fitness conflicts with host genomes by holding in check the extra genetic load they pose.


Assuntos
DNA Nucleotidiltransferases/genética , Sequências Repetitivas de Ácido Nucleico/genética , Proteína SUMO-1/genética , Transcrição Gênica , Segregação de Cromossomos/genética , Variações do Número de Cópias de DNA/genética , Replicação do DNA/genética , Genoma Fúngico/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas Proto-Oncogênicas c-raf/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sumoilação/genética , Transativadores/genética
6.
Plasmid ; 102: 19-28, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30726706

RESUMO

An underlying theme in the segregation of low-copy bacterial plasmids is the assembly of a 'segrosome' by DNA-protein and protein-protein interactions, followed by energy-driven directed movement. Analogous partitioning mechanisms drive the segregation of host chromosomes as well. Eukaryotic extra-chromosomal elements, exemplified by budding yeast plasmids and episomes of certain mammalian viruses, harbor partitioning systems that promote their physical association with chromosomes. In doing so, they indirectly take advantage of the spindle force that directs chromosome movement to opposite cell poles. Molecular-genetic, biochemical and cell biological studies have revealed several unsuspected aspects of 'chromosome hitchhiking' by the yeast 2-micron plasmid, including the ability of plasmid sisters to associate symmetrically with sister chromatids. As a result, the plasmid overcomes the 'mother bias' experienced by plasmids lacking a partitioning system, and elevates itself to near chromosome status in equal segregation. Chromosome association for stable propagation, without direct energy expenditure, may also be utilized by a small minority of bacterial plasmids-at least one case has been reported. Given the near perfect accuracy of chromosome segregation, it is not surprising that elements residing in evolutionarily distant host organisms have converged upon the common strategy of gaining passage to daughter cells as passengers on chromosomes.


Assuntos
Cromossomos Fúngicos/genética , Sequências Repetitivas de Ácido Nucleico/genética , Segregação de Cromossomos/genética , Replicação do DNA/genética , Plasmídeos/genética , Saccharomyces cerevisiae/genética
7.
Micromachines (Basel) ; 9(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30424148

RESUMO

Tethered particle motion/microscopy (TPM) is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA⁻protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.

8.
Nucleic Acids Res ; 44(22): 10804-10823, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986956

RESUMO

Serine and tyrosine site-specific recombinases (SRs and YRs, respectively) provide templates for understanding the chemical mechanisms and conformational dynamics of strand cleavage/exchange between DNA partners. Current evidence suggests a rather intriguing mechanism for serine recombination, in which one half of the cleaved synaptic complex undergoes a 180° rotation relative to the other. The 'small' and 'large' SRs contain a compact amino-terminal catalytic domain, but differ conspicuously in their carboxyl-terminal domains. So far, only one serine recombinase has been analyzed using single substrate molecules. We now utilized single-molecule tethered particle motion (TPM) to follow step-by-step recombination catalyzed by a large SR, phage ϕC31 integrase. The integrase promotes unidirectional DNA exchange between attB and attP sites to integrate the phage genome into the host chromosome. The recombination directionality factor (RDF; ϕC31 gp3) activates the excision reaction (attL × attR). From integrase-induced changes in TPM in the presence or absence of gp3, we delineated the individual steps of recombination and their kinetic features. The gp3 protein appears to regulate recombination directionality by selectively promoting or excluding active conformations of the synapse formed by specific att site partners. Our results support a 'gated rotation' of the synaptic complex between DNA cleavage and joining.


Assuntos
Integrases/química , Proteínas Virais/química , Sítios de Ligação Microbiológicos , Bacteriófagos/enzimologia , DNA Bacteriano/química , Escherichia coli , Cinética , Ligação Proteica , Recombinação Genética , Imagem Individual de Molécula
9.
Nucleic Acids Res ; 44(17): 8302-23, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27492289

RESUMO

The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts' fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates 'mother bias' (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation.


Assuntos
Cromossomos/metabolismo , Replicação do DNA , Genoma , Animais , Células COS , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Genes Reporter , Células HEK293 , Humanos , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Plasmídeos/metabolismo , Coesinas
10.
Sci Adv ; 2(11): e1601605, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28090586

RESUMO

DNA repair by homologous recombination (HR) underpins cell survival and fuels genome instability, cancer, and evolution. However, the main kinds and sources of DNA damage repaired by HR in somatic cells and the roles of important HR proteins remain elusive. We present engineered proteins that trap, map, and quantify Holliday junctions (HJs), a central DNA intermediate in HR, based on catalytically deficient mutant RuvC protein of Escherichia coli. We use RuvCDefGFP (RDG) to map genomic footprints of HR at defined DNA breaks in E. coli and demonstrate genome-scale directionality of double-strand break (DSB) repair along the chromosome. Unexpectedly, most spontaneous HR-HJ foci are instigated, not by DSBs, but rather by single-stranded DNA damage generated by replication. We show that RecQ, the E. coli ortholog of five human cancer proteins, nonredundantly promotes HR-HJ formation in single cells and, in a novel junction-guardian role, also prevents apparent non-HR-HJs promoted by RecA overproduction. We propose that one or more human RecQ orthologs may act similarly in human cancers overexpressing the RecA ortholog RAD51 and find that cancer genome expression data implicate the orthologs BLM and RECQL4 in conjunction with EME1 and GEN1 as probable HJ reducers in such cancers. Our results support RecA-overproducing E. coli as a model of the many human tumors with up-regulated RAD51 and provide the first glimpses of important, previously elusive reaction intermediates in DNA replication and repair in single living cells.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Bacteriano , DNA Cruciforme , Escherichia coli , RecQ Helicases , Recombinação Genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo
11.
Mob Genet Elements ; 5(2): 1-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442178

RESUMO

The chromosome-like stability of the Saccharomyces cerevisiae plasmid 2 micron circle likely stems from its ability to tether to chromosomes and segregate by a hitchhiking mechanism. The plasmid partitioning system, responsible for chromosome-coupled segregation, is comprised of 2 plasmid coded proteins Rep1 and Rep2 and a partitioning locus STB. The evidence for the hitchhiking model for mitotic plasmid segregation, although compelling, is almost entirely circumstantial. Direct tests for plasmid-chromosome association are hampered by the limited resolving power of current cell biological tools for analyzing yeast chromosomes. Recent investigations, exploiting the improved resolution of yeast meiotic chromosomes, have revealed the plasmid's propensity to be present at or near chromosome tips. This localization is consistent with the rapid plasmid movements during meiosis I prophase, closely resembling telomere dynamics driven by a meiosis-specific nuclear envelope motor. Current evidence is consistent with the plasmid utilizing the motor as a platform for gaining access to telomeres. Episomes of viruses of the papilloma family and the gammaherpes subfamily persist in latently infected cells by tethering to chromosomes. Selfish genetic elements from fungi to mammals appear to have, by convergent evolution, arrived at the common strategy of chromosome association as a means for stable propagation.

12.
Microbiol Spectr ; 3(4)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26350308

RESUMO

Tyrosine site-specific recombinases (YRs) are widely distributed among prokaryotes and their viruses, and were thought to be confined to the budding yeast lineage among eukaryotes. However, YR-harboring retrotransposons (the DIRS and PAT families) and DNA transposons (Cryptons) have been identified in a variety of eukaryotes. The YRs utilize a common chemical mechanism, analogous to that of type IB topoisomerases, to bring about a plethora of genetic rearrangements with important physiological consequences in their respective biological contexts. A subset of the tyrosine recombinases has provided model systems for analyzing the chemical mechanisms and conformational features of the recombination reaction using chemical, biochemical, topological, structural, and single molecule-biophysical approaches. YRs with simple reaction requirements have been utilized to bring about programmed DNA rearrangements for addressing fundamental questions in developmental biology. They have also been employed to trace the topological features of DNA within high-order DNA interactions established by protein machines. The directed evolution of altered specificity YRs, combined with their spatially and temporally regulated expression, heralds their emergence as vital tools in genome engineering projects with wide-ranging biotechnological and medical applications.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , DNA Nucleotidiltransferases/metabolismo , Proteínas Fúngicas/metabolismo , Recombinação Genética , Saccharomycetales/enzimologia , Tirosina/metabolismo , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Nucleotidiltransferases/química , DNA Nucleotidiltransferases/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Saccharomycetales/química , Saccharomycetales/genética
13.
J Biol Chem ; 290(37): 22734-46, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26209636

RESUMO

Holliday junctions are critical intermediates in DNA recombination, repair, and restart of blocked replication. Hexapeptides have been identified that bind to junctions and inhibit various junction-processing enzymes, and these peptides confer anti-microbial and anti-tumor properties. Earlier studies suggested that inhibition results from stabilization of peptide-bound Holliday junctions in the square planar conformation. Here, we use single molecule fluorescence resonance energy transfer (smFRET) and two model junctions, which are AT- or GC-rich at the branch points, to show that binding of the peptide KWWCRW induces a dynamic ensemble of junction conformations that differs from both the square planar and stacked X conformations. The specific features of the conformational distributions differ for the two peptide-bound junctions, but both junctions display greatly decreased Mg(2+) dependence and increased conformational fluctuations. The smFRET results, complemented by gel mobility shift and small angle x-ray scattering analyses, reveal structural effects of peptides and highlight the sensitivity of smFRET for analyzing complex mixtures of DNA structures. The peptide-induced conformational dynamics suggest multiple stacking arrangements of aromatic amino acids with the nucleobases at the junction core. This conformational heterogeneity may inhibit DNA processing by increasing the population of inactive junction conformations, thereby preventing the binding of processing enzymes and/or resulting in their premature dissociation.


Assuntos
DNA Cruciforme/química , Conformação de Ácido Nucleico , Oligopeptídeos/química , DNA Cruciforme/metabolismo , Transferência Ressonante de Energia de Fluorescência , Oligopeptídeos/metabolismo
14.
Nucleic Acids Res ; 43(12): 6023-37, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25999343

RESUMO

Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.


Assuntos
Arginina/química , DNA Nucleotidiltransferases/química , Integrases/química , Compostos Organofosforados/química , Recombinação Genética , DNA/química , DNA/metabolismo , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , Integrases/genética , Integrases/metabolismo , Mutação , Estereoisomerismo
15.
Nucleic Acids Res ; 43(6): 3237-55, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25765648

RESUMO

Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of 'non-productive', 'pre-synaptic' and 'synaptic' complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations.


Assuntos
DNA Nucleotidiltransferases/química , DNA Nucleotidiltransferases/genética , Integrases/química , Integrases/genética , Substituição de Aminoácidos , Catálise , Domínio Catalítico/genética , DNA Nucleotidiltransferases/metabolismo , Integrases/metabolismo , Cinética , Modelos Moleculares , Mutação Puntual , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica
16.
Microbiol Spectr ; 2(5)2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25541598

RESUMO

The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.


Assuntos
Replicação do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Instabilidade Genômica , Plasmídeos , Saccharomyces cerevisiae/genética , Divisão Celular , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Cell Biol ; 205(5): 643-61, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24914236

RESUMO

The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid-telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.


Assuntos
DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Meiose , Sequências Repetitivas de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Telômero/ultraestrutura , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Proteínas do Citoesqueleto/genética , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Cinetocoros , Proteínas de Membrana/genética , Mitose , Proteínas Nucleares/genética , Plasmídeos/metabolismo , Prófase , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Fuso Acromático/genética , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
18.
J Mol Biol ; 426(4): 793-815, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24286749

RESUMO

Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.


Assuntos
DNA Nucleotidiltransferases/metabolismo , DNA/química , DNA/genética , Recombinação Genética , DNA Nucleotidiltransferases/genética , DNA Super-Helicoidal/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Biologia Molecular/métodos , Conformação de Ácido Nucleico , Transposon Resolvases/genética , Transposon Resolvases/metabolismo
20.
Nucleic Acids Res ; 41(14): 7031-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23737451

RESUMO

Flp, a tyrosine site-specific recombinase coded for by the selfish two micron plasmid of Saccharomyces cerevisiae, plays a central role in the maintenance of plasmid copy number. The Flp recombination system can be manipulated to bring about a variety of targeted DNA rearrangements in its native host and under non-native biological contexts. We have performed an exhaustive analysis of the Flp recombination pathway from start to finish by using single-molecule tethered particle motion (TPM). The recombination reaction is characterized by its early commitment and high efficiency, with only minor detraction from 'non-productive' and 'wayward' complexes. The recombination synapse is stabilized by strand cleavage, presumably by promoting the establishment of functional interfaces between adjacent Flp monomers. Formation of the Holliday junction intermediate poses a rate-limiting barrier to the overall reaction. Isomerization of the junction to the conformation favoring its resolution in the recombinant mode is not a slow step. Consistent with the completion of nearly every initiated reaction, the chemical steps of strand cleavage and exchange are not reversible during a recombination event. Our findings demonstrate similarities and differences between Flp and the mechanistically related recombinases λ Int and Cre. The commitment and directionality of Flp recombination revealed by TPM is consistent with the physiological role of Flp in amplifying plasmid DNA.


Assuntos
DNA Nucleotidiltransferases/metabolismo , DNA/metabolismo , Bacteriófago lambda/enzimologia , DNA/química , Clivagem do DNA , Integrases/metabolismo , Cinética , Movimento (Física) , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA