Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(8): 101678, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39096912

RESUMO

Chemotherapy-induced premature ovarian insufficiency (CIPOI) triggers gonadotoxicity in women undergoing cancer treatment, leading to loss of ovarian reserves and subfertility, with no effective therapies available. In our study, fecal microbiota transplantation in a cisplatin-induced POI mouse model reveals that a dysbiotic gut microbiome negatively impacts ovarian health in CIPOI. Multi-omics analyses show a significant decrease in Limosilactobacillus reuteri and its catabolite, ß-resorcylic acid , in the CIPOI group in comparison to healthy controls. Supplementation with L. reuteri or ß-RA mitigates cisplatin-induced hormonal disruptions, morphological damages, and reductions in follicular reserve. Most importantly, ß-RA pre-treatment effectively preserves oocyte function, embryonic development, and fetus health, thereby protecting against chemotherapy-induced subfertility. Our results provide evidence that ß-RA suppresses the nuclear accumulation of sex-determining region Y-box 7, which in turn reduces Bcl-2-associated X activation and inhibits granulosa cell apoptosis. These findings highlight the therapeutic potential of targeting the gut-ovary axis for fertility preservation in CIPOI.


Assuntos
Cisplatino , Limosilactobacillus reuteri , Ovário , Insuficiência Ovariana Primária , Feminino , Animais , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Camundongos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Ovário/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Transplante de Microbiota Fecal , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Camundongos Endogâmicos C57BL , Antineoplásicos/toxicidade , Antineoplásicos/efeitos adversos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Modelos Animais de Doenças , Infertilidade
2.
Sci Rep ; 14(1): 16816, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039185

RESUMO

To accurately define the role of the gut microbiota in health and disease pathogenesis, the preservation of stool sample integrity, in terms of microbial community composition and metabolic function, is critical. This presents a challenge for any studies which rely on participants self-collecting and returning stool samples as this introduces variability and uncertainty of sample storage/handling. Here, we tested the performance of three stool sample collection/preservation buffers when storing human stool samples at different temperatures (room temperature [20 °C], 4 °C and - 80 °C) for up to three days. We compared and quantified differences in 16S rRNA sequencing composition and short-chain fatty acid profiles compared against immediately snap-frozen stool. We found that the choice of preservation buffer had the largest effect on the resulting microbial community and metabolomic profiles. Collectively analysis confirmed that PSP and RNAlater buffered samples most closely recapitulated the microbial diversity profile of the original (immediately - 80 °C frozen) sample and should be prioritised for human stool microbiome studies.


Assuntos
Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Manejo de Espécimes , Humanos , Fezes/microbiologia , Manejo de Espécimes/métodos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Temperatura , Microbiota/genética , Masculino , Adulto , Metabolômica/métodos , Feminino , Multiômica
3.
BMC Med ; 21(1): 302, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559119

RESUMO

BACKGROUND: The results of human observational studies on the correlation between gut microbiota perturbations and polycystic ovary syndrome (PCOS) have been contradictory. This study aimed to perform the first systematic review and meta-analysis to evaluate the specificity of the gut microbiota in PCOS patients compared to healthy women. METHODS: Literature through May 22, 2023, was searched on PubMed, Web of Science, Medline, Embase, Cochrane Library, and Wiley Online Library databases. Unreported data in diversity indices were filled by downloading and processing raw sequencing data. Systematic review inclusion: original studies were eligible if they applied an observational case-control design, performed gut microbiota analysis and reported diversity or abundance measures, sampled general pre-menopausal women with PCOS, and are longitudinal studies with baseline comparison between PCOS patients and healthy females. Systematic review exclusion: studies that conducted interventional or longitudinal comparisons in the absence of a control group. Two researchers made abstract, full-text, and data extraction decisions, independently. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodologic quality. Hedge's g standardized mean difference (SMD), confidence intervals (CIs), and heterogeneity (I2) for alpha diversity were calculated. Qualitative syntheses of beta-diversity and microbe alterations were performed. RESULTS: Twenty-eight studies (n = 1022 patients, n = 928 control) that investigated gut microbiota by collecting stool samples were included, with 26 and 27 studies having provided alpha-diversity and beta-diversity results respectively. A significant decrease in microbial evenness and phylogenetic diversity was observed in PCOS patients when compared with control participants (Shannon index: SMD = - 0.27; 95% CI, - 0.37 to - 0.16; phylogenetic diversity: SMD = - 0.39; 95% CI, -- 0.74 to - 0.03). We also found that reported beta-diversity was inconsistent between studies. Despite heterogeneity in bacterial relative abundance, we observed depletion of Lachnospira and Prevotella and enrichment of Bacteroides, Parabacteroides, Lactobacillus, Fusobacterium, and Escherichia/Shigella in PCOS. Gut dysbiosis in PCOS, which might be characterized by the reduction of short-chain fatty acid (SCFA)-producing and bile-acid-metabolizing bacteria, suggests a shift in balance to favor pro-inflammatory rather than anti-inflammatory bacteria. CONCLUSIONS: Gut dysbiosis in PCOS is associated with decreased diversity and alterations in bacteria involved in microbiota-host crosstalk. TRIAL REGISTRATION: PROSPERO registration: CRD42021285206, May 22, 2023.


Assuntos
Microbioma Gastrointestinal , Microbiota , Síndrome do Ovário Policístico , Humanos , Feminino , Disbiose , Filogenia
4.
Pathogens ; 12(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36839534

RESUMO

Current inflammatory bowel disease (IBD) treatments including non-biological, biological, and nutritional therapies aim to achieve remission and mucosal healing. Treatment efficacy, however, is highly variable, and there is growing evidence that the gut microbiota influences therapeutic efficacy. The aim of this study was to conduct a systematic review and meta-analysis to define changes in the gut microbiota following IBD treatment and to identify microbial predictors of treatment response. A systematic search using MEDLINE/Embase and PubMed was performed in July 2022. The review was conducted based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Studies were included if they reported longitudinal microbiota analysis (>2 weeks) using next-generation sequencing or high-throughput sequencing of faecal/mucosal samples from IBD patients commencing treatment. Meta-analysis on alpha-diversity changes following infliximab treatment was conducted. Thirty-nine studies met the inclusion criteria, and four studies were included in the meta-analysis. An increase in alpha diversity was observed following treatment with 5-aminosalicylates, corticosteroids, and biological therapies in most studies. Characteristic signatures involving the enrichment of short-chain-fatty-acid-producing bacteria including Faecalibacterium prausnitzii and a reduction of pathogenic bacteria including various Proteobacteria were demonstrated following treatment with specific signatures identified based on treatment outcome. The meta-analysis demonstrated a statistically significant increase in bacterial richness following infliximab treatment (standardised mean difference -1.16 (-1.50, -0.83), p < 0.00001). Conclusion: Distinct microbial signatures are seen following treatment and are associated with treatment response. The interrogation of large longitudinal studies is needed to establish the link between the gut microbiota and IBD therapeutic outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA