Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(8): 3008-3018, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29402082

RESUMO

Simple, efficient reactions for connecting biological building-blocks open up many new possibilities. Here we have designed SnoopLigase, a protein that catalyzes site-specific transamidation, forming an isopeptide bond with more than 95% efficiency between two peptide tags, SnoopTagJr and DogTag. We initially developed these components by three-part splitting of the Streptococcus pneumoniae adhesin RrgA. The units were then engineered, guided by structure, bioinformatic analysis of sequence homology, and computational prediction of stability. After engineering, SnoopLigase demonstrated high-yield coupling under a wide range of buffers and temperatures. SnoopTagJr and DogTag were functional at the N- or C-terminus, while DogTag was also functional at internal sites in proteins. Having directed reaction of SnoopTagJr and DogTag, SnoopLigase remained stably bound to the ligated product, thus reconstituting the parent domain. Separating products from unreacted starting material and catalyst is often as challenging as reactions themselves. However, solid-phase immobilization of SnoopLigase enabled the ligated SnoopTagJr-DogTag product to be eluted with high purity, free from SnoopLigase or unligated substrates. The solid-phase catalyst could then be reused multiple times. In search of a generic route to improve the resilience of enzymes, we fused SnoopTagJr to the N-terminus and DogTag to the C-terminus of model enzymes, allowing cyclization via SnoopLigase. While wild-type phytase and ß-lactamase irreversibly aggregated upon heating, cyclization using SnoopLigase conferred exceptional thermoresilience, with both enzymes retaining solubility and activity following heat treatment up to 100 °C. SnoopLigase should create new opportunities for conjugation and nanoassembly, while illustrating how to harness product inhibition and extend catalyst utility.

2.
Sci Rep ; 6: 24656, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27098162

RESUMO

Polypeptide aggregation into amyloid is linked with several debilitating human diseases. Despite the inherent risk of aggregation-induced cytotoxicity, bacteria control the export of amyloid-prone subunits and assemble adhesive amyloid fibres during biofilm formation. An Escherichia protein, CsgC potently inhibits amyloid formation of curli amyloid proteins. Here we unlock its mechanism of action, and show that CsgC strongly inhibits primary nucleation via electrostatically-guided molecular encounters, which expands the conformational distribution of disordered curli subunits. This delays the formation of higher order intermediates and maintains amyloidogenic subunits in a secretion-competent form. New structural insight also reveal that CsgC is part of diverse family of bacterial amyloid inhibitors. Curli assembly is therefore not only arrested in the periplasm, but the preservation of conformational flexibility also enables efficient secretion to the cell surface. Understanding how bacteria safely handle amyloidogenic polypeptides contribute towards efforts to control aggregation in disease-causing amyloids and amyloid-based biotechnological applications.


Assuntos
Amiloide/química , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Eletricidade Estática , Transporte Ativo do Núcleo Celular , Amiloide/classificação , Amiloide/genética , Amiloide/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Chaperonas Moleculares/metabolismo , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA