Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS One ; 17(9): e0273289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112573

RESUMO

Varroa destructor is a honey bee (Apis mellifera) parasite identified as one of the leading causes of overwintering colony loss in New Zealand. It has been shown that a naturally occurring heritable trait, "Varroa Sensitive Hygiene" (VSH), confers an advantage to colonies by increasing behaviours that limit the survival and reproduction of Varroa mites. The SNP 9-9224292 is an adenine/guanine (A/G) polymorphism on chromosome 9 of Apis mellifera where the G allele was observed to be associated with VSH behaviour in North American honey bees. In this study, we sought to determine if selection for the G allele of SNP 9-9224292 could decrease Varroa mite infestation of New Zealand honey bee (Apis mellifera ligustica) colonies. We genotyped queens and tracked their colonies over summer before measuring Varroa levels at the point of autumn Varroa treatment. The mean Varroa population level in colonies headed by queens that carry two copies of VSH associated G allele of SNP 9-9224292 was 28.5% (P<0.05) lower compared with colonies headed by queens with two copies of non-VSH associated A alleles. Although a significant reduction in mite infestation was achieved in treatment colonies, conventional Varroa treatment was still required for adequate Varroa control. Considering the open mating of queens used and a lack of drift control in this study, this VSH SNP shows promise for marker assisted selection of New Zealand honey bees when aiming for innate Varroa control traits.


Assuntos
Infestações por Ácaros , Varroidae , Animais , Abelhas/genética , Infestações por Ácaros/epidemiologia , Nova Zelândia , Reprodução , Estações do Ano , Varroidae/genética
2.
J Endocrinol ; 248(2): 207-220, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33295877

RESUMO

Insulin-like growth factor-1 (IGF1) is crucial for regulating post-natal growth and, along with myostatin (MSTN), regulates muscle size. Here, we sought to clarify the roles of these two genes in regulating sexually dimorphic growth of body and muscle mass. In the first study, we established that Igf1 mRNA was increased to a greater extent and Igf1 receptor mRNA increased earlier in male, than in female, gastrocnemius muscles during the rapid phase of growth (from 2 to 6 weeks) were unchanged, thereafter, to 32 weeks of age in WT mice (P < 0.001). In the second study, we sought to determine if supplemental IGF1 could overcome the sexual dimorphism of muscle and body mass, when myostatin is absent. We crossed myostatin null (Mstn-/-) mice with mice over-expressing Igf1 in skeletal muscle (Igf1+) to generate six genotypes; control (Mstn+/+), Mstn+/-, Mstn-/-, Mstn+/+:Igf1+, Mstn+/-:Igf1+ and Mstn-/-:Igf1+ (n = 8 per genotype and sex). In both sexes, body mass at 12 weeks was increased by at least 1.6-fold and muscle mass by at least 3-fold in Mstn-/-:Igf1+ compared with Mstn+/+ mice (P < 0.001). The abundance of AKT was increased in muscles of mice transgenic for Mstn, while phosphorylation of AKTS473 was increased in both male and female mice transgenic for Igf1+. The ratio of phosphorylated to total AKT was 1.9-fold greater in male mice (P < 0.001). Thus, despite increased growth of skeletal muscle and body size when myostatin was absent and IGF1 was in excess, sexual dimorphism persisted, an effect consistent with greater IGF1-induced activation of AKT in skeletal muscles of males.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Miostatina/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Receptor IGF Tipo 1/metabolismo
3.
J Endocrinol ; 234(2): 187-200, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28533420

RESUMO

Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue, we crossed myostatin null (Mstn-/-) mice with mice overexpressing Igf1 in skeletal muscle (Igf1+) to generate six genotypes of male mice; wild type (Mstn+/+ ), Mstn+/-, Mstn-/-, Mstn+/+:Igf1+, Mstn+/-:Igf1+ and Mstn-/-:Igf1+ Overexpression of Igf1 increased the mass of mixed fibre type muscles (e.g. Quadriceps femoris) by 19% over Mstn+/+ , 33% over Mstn+/- and 49% over Mstn-/- (P < 0.001). By contrast, the mass of the gonadal fat pad was correspondingly reduced with the removal of Mstn and addition of Igf1 Myostatin regulated the number, while IGF1 regulated the size of myofibres, and the deletion of Mstn and Igf1+ independently increased the proportion of fast type IIB myosin heavy chain isoforms in T. anterior (up to 10% each, P < 0.001). The abundance of AKT and rpS6 was increased in muscles of Mstn-/-mice, while phosphorylation of AKTS473 was increased in Igf1+mice (Mstn+/+:Igf1+, Mstn+/-:Igf1+ and Mstn-/-:Igf1+). Our results demonstrate that a greater than additive effect is observed on the growth of skeletal muscle and in the reduction of body fat when myostatin is absent and IGF1 is in excess. Finally, we show that myostatin and IGF1 regulate skeletal muscle size, myofibre type and gonadal fat through distinct mechanisms that involve increasing the total abundance and phosphorylation status of AKT and rpS6.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/fisiologia , Miostatina/metabolismo , Tecido Adiposo/fisiologia , Animais , Genótipo , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miostatina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
PLoS One ; 9(4): e94356, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718581

RESUMO

Skeletal muscles of myostatin null (Mstn(-/-)) mice are more susceptible to atrophy during hind limb suspension (HS) than are muscles of wild-type mice. Here we sought to elucidate the mechanism for this susceptibility and to determine if Mstn(-/-) mice can regain muscle mass after HS. Male Mstn(-/-) and wild-type mice were subjected to 0, 2 or 7 days of HS or 7 days of HS followed by 1, 3 or 7 days of reloading (n = 6 per group). Mstn(-/-) mice lost more mass from muscles expressing the fast type IIb myofibres during HS and muscle mass was recovered in both genotypes after reloading for 7 days. Concentrations of MAFbx and MuRF1 mRNA, crucial ligases regulating the ubiquitin-proteasome system, but not MUSA1, a BMP-regulated ubiquitin ligase, were increased more in muscles of Mstn(-/-) mice, compared with wild-type mice, during HS and concentrations decreased in both genotypes during reloading. Similarly, concentrations of LC3b, Gabarapl1 and Atg4b, key effectors of the autophagy-lysosomal system, were increased further in muscles of Mstn(-/-) mice, compared with wild-type mice, during HS and decreased in both genotypes during reloading. There was a greater abundance of 4E-BP1 and more bound to eIF4E in muscles of Mstn(-/-) compared with wild-type mice (P<0.001). The ratio of phosphorylated to total eIF2α increased during HS and decreased during reloading, while the opposite pattern was observed for rpS6. Concentrations of myogenic regulatory factors (MyoD, Myf5 and myogenin) mRNA were increased during HS in muscles of Mstn(-/-) mice compared with controls (P<0.001). We attribute the susceptibility of skeletal muscles of Mstn(-/-) mice to atrophy during HS to an up- and downregulation, respectively, of the mechanisms regulating atrophy of myofibres and translation of mRNA. These processes are reversed during reloading to aid a faster rate of recovery of muscle mass in Mstn(-/-) mice.


Assuntos
Regulação da Expressão Gênica , Elevação dos Membros Posteriores , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Miostatina/deficiência , Biossíntese de Proteínas/genética , Transdução de Sinais/genética , Animais , Western Blotting , Peso Corporal , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miostatina/metabolismo , Tamanho do Órgão , Fosforilação , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Mol Cell Biochem ; 390(1-2): 9-18, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24378996

RESUMO

The growth and differentiation factor-11 (GDF-11) gene is thought to code for a single protein that plays a crucial role in regulating the development of multiple tissues. In this study, we aimed to investigate if the GDF-11 gene has another transcript and, if so, to characterise this transcript and determine its tissue-specific and developmental expression. We have identified a novel transcript of GDF-11 in mouse muscle, which contains the 3' region of intron 1, exon 2, exon 3 and 3'UTR, and has two transcription initiation sites and a single termination site. We named the novel transcript GDF-11ΔEx1 because it does not contain exon 1 of canonical GDF-11. The GDF-11ΔEx1 transcript was expressed in the skeletal muscles, heart, brain and kidney, but was undetectable in the liver and gut. The concentration of the GDF-11ΔEx1 transcript was increased in gastrocnemius muscles from three to 6 weeks of age, a period of accelerated muscle growth, steadily declined thereafter and was higher in male than female mice (P < 0.001 for age and sex). GDF-11ΔEx1 cDNA was predicted to code for a putative N-terminal-truncated propeptide and the canonical ligand for GDF-11. However, propeptide-specific antibodies could not identify proteins of the expected size in skeletal muscle. Interestingly, in silico analysis of the GDF-11ΔEx1 RNA predicted a secondary structure with the potential to coordinate multiple protein interactions as a molecular scaffold. Therefore, we postulate that GDF-11ΔEx1 may act as a long non-coding RNA to regulate the transcription of canonical GDF-11 and/or other genes in skeletal muscle and other tissues.


Assuntos
Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Isoformas de Proteínas/genética , RNA Longo não Codificante/genética , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/isolamento & purificação , Clonagem Molecular , DNA Complementar , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Diferenciação de Crescimento/isolamento & purificação , Masculino , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Isoformas de Proteínas/isolamento & purificação , Homologia de Sequência
6.
PLoS One ; 8(12): e81713, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312578

RESUMO

Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P<0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant directly antagonizes the biological activity of the canonical gene product.


Assuntos
Processamento Alternativo , Desenvolvimento Muscular , Miostatina/genética , Miostatina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Dados de Sequência Molecular , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica/metabolismo , Miostatina/química , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ovinos , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
7.
J Physiol ; 587(3): 669-77, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047209

RESUMO

Myostatin inhibits myogenesis and there is reduced abundance of the mature protein in skeletal muscles of adult male compared with female mice. This reduction probably occurs after translation, which suggests that it is a regulated mechanism to reduce the availability of myostatin in males. Reduced myostatin may, thereby, contribute to the development of sexually dimorphic growth of skeletal muscle. Our first objective was to determine if the decrease in mature myostatin protein occurs before the linear growth phase to aid growth, or afterwards to maintain the mass of adult muscle. Mice were killed from 2 to 32 weeks and the gastrocnemius muscle was excised. Myostatin mRNA increased from 2 to 32 weeks and was higher in males than females (P < 0.001). In contrast, mature protein decreased in males after 6 weeks (P < 0.001). Our second objective was to determine if growth hormone (GH) induces the decrease in mature myostatin protein. GH increased myostatin mRNA and decreased the abundance of mature protein in hypophysectomised mice (P < 0.05). Our final objective was to determine if the decrease in mature protein occurs in skeletal muscles of male Stat5b(-/-) mice (Stat5b mediates the actions of GH). As expected, mature myostatin protein was not reduced in Stat5b(-/-) males compared with females. However, myostatin mRNA remained higher in males than females irrespective of genotype. These data suggest that: (1) the decrease in mature myostatin protein is developmentally regulated, (2) GH acting via Stat5b regulates the abundance of mature myostatin and (3) GH acts via a non-Stat5b pathway to regulate myostatin mRNA.


Assuntos
Regulação para Baixo , Hormônio do Crescimento/metabolismo , Músculo Esquelético , Miostatina/metabolismo , Animais , Peso Corporal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Miostatina/genética , Fator de Transcrição STAT5/deficiência , Fator de Transcrição STAT5/genética , Caracteres Sexuais
8.
Heart Lung Circ ; 17(1): 33-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17581790

RESUMO

BACKGROUND: Mechano-growth factor (MGF) is a splice-variant of IGF-I sharing an identical mature region, but with a different E domain. Our objective was to determine if MGF would reduce the area of 'at-risk' myocardium and improve cardiac function in the post-infarct heart. METHODS: Infarcts were induced by injection of microspheres. In experiment 1, sheep were treated with vehicle, 200 nM each of mature IGF-I, MGF E domain, or full-length MGF. In experiment 2, sheep were treated with vehicle or 200 nM of MGF E domain alone. Cardiac function was assessed using echocardiography and sheep were killed eight days post-MI. Evans Blue dye was injected before death to stain the compromised myocardium. Immunohistochemistry was used to assess the abundance of pAkt(T308) and cleaved caspase 3. RESULTS: In experiment 1, cardiac function improved in sheep treated with the MGF E domain, while in experiment 2, MGF E domain preserved cardiac function and there was 35% less compromised cardiac muscle than controls. Furthermore, immunostaining of cleaved caspase 3 was absent in MGF E domain-treated hearts, suggesting that MGF E domain reduced infarct expansion. CONCLUSIONS: We conclude that the E domain of MGF protects the myocardium against ischaemia, thus improving cardiac function post-MI.


Assuntos
Fator de Crescimento Insulin-Like I/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Ecocardiografia Doppler , Testes de Função Cardíaca , Hemodinâmica/fisiologia , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/metabolismo , Infarto do Miocárdio/diagnóstico por imagem , Probabilidade , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade , Ovinos , Volume Sistólico
9.
Appl Environ Microbiol ; 72(10): 6554-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17021205

RESUMO

Integration of the pCG79 temperature-sensitive plasmid carrying Tn611 was used to generate libraries of mutants with blocked sterol-transforming ability of the sterol-utilizing strains Mycobacterium smegmatis mc(2)155 and Mycobacterium phlei M51-Ept. Of the 10,000 insertional mutants screened from each library, 4 strains with altered activity of the sterol-degrading enzymes were identified. A blocked 4-androstene-3,17-dione-producing M. phlei mutant transformed sitosterol to 23,24-dinorcholane derivatives that are useful starting materials for corticosteroid syntheses. A recombinant plasmid, pFJ92, was constructed from the genomic DNA of one of the insertional mutants of M. smegmatis, 10A12, which was blocked in 3-ketosteroid 9alpha-hydroxylation and carrying the transposon insertion and flanking DNA sequences, and used to isolate a chromosomal fragment encoding the 9alpha-hydroxylase. The open reading frame encodes the 383-amino-acid terminal oxygenase of 3-ketosteroid 9alpha-hydroxylase in M. smegmatis mc(2)155 and has domains typically conserved in class IA terminal oxygenases. Escherichia coli containing the gene could hydroxylate the steroid ring at the 9alpha position.


Assuntos
Mycobacterium smegmatis/enzimologia , Oxigenases/metabolismo , Esteróis/metabolismo , Clonagem Molecular , Clonagem de Organismos , Expressão Gênica , Dados de Sequência Molecular , Oxigenases/genética
10.
J Histochem Cytochem ; 51(12): 1611-20, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14623929

RESUMO

This study tested whether administration of insulin-like growth factor-II (IGF-II) enhances muscle regeneration. Rat biceps femoris muscle was damaged with notexin and then IGF-II was administered for up to 7 days. Results show that the proportion of nuclei containing or surrounded by immunoreactivity to MyoD, myogenin, and developmental myosin heavy chain (dMHC) is less in the IGF-II treatment group relative to the control group on days 1 (p=0.057), 2 (p=0.034), and 3 (p=0.047), respectively. This indicates a delay in muscle precursor cell (MPC) proliferation and differentiation with IGF-II administration. This effect was not associated with decreased binding capacity of the type 1 IGF receptor, as determined by receptor autoradiography in day 1 muscle sections (NS), but was associated with inhibition of phagocytic processes. The cross-sectional area of regenerating muscle fibers was significantly greater in the IGF-II treatment group than in the control group by day 7 (p=0.0092). The enhancing effect of IGF-II on late muscle regeneration, when the main process taking place is fiber enlargement, coincides with the period in which IGF-II is normally expressed by regenerating muscle, indicating that greater endogenous production of IGF-II would be associated with improved regeneration.


Assuntos
Fator de Crescimento Insulin-Like II/biossíntese , Músculo Esquelético/fisiologia , Regeneração , Animais , Autorradiografia , Diferenciação Celular , Divisão Celular , Núcleo Celular/metabolismo , Imuno-Histoquímica , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Células Musculares/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Fatores de Tempo
11.
Am J Physiol Endocrinol Metab ; 285(1): E82-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12618358

RESUMO

Myostatin inhibits myogenesis. Therefore, we sought to determine if mice lacking the myostatin gene [Mstn(-/-)] would lose less muscle mass than wild-type mice during 7 days of hindlimb suspension (HS). Male Mstn(-/-) and wild-type (C57) mice were subjected to HS or served as ground-based controls (n = 6/group). Wild-type mice lost 8% of body mass and approximately 13% of wet mass from biceps femoris, quadriceps femoris, and soleus, whereas the mass of extensor digitorum longus (EDL) was unchanged after HS. Unexpectedly, Mstn(-/-) mice lost more body (13%, P < 0.05) and quadriceps femoris (17%, P < 0.05) mass than wild-type mice and lost 33% of EDL mass (P < 0.01) after HS. Protein expression of myostatin in biceps femoris and quadriceps femoris was not altered, whereas expression of MyoD, Myf-5, and myogenin increased in wild-type mice and tended to decrease in muscles of Mstn(-/-) mice. These data suggest that HS induced myogenesis in wild-type mice to counter atrophy, whereas myogenesis was not induced in Mstn(-/-) mice, thereby resulting in a greater loss of muscle mass.


Assuntos
Proteínas de Ligação a DNA , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/fisiologia , Transativadores , Fator de Crescimento Transformador beta/deficiência , Animais , Atrofia/patologia , Biomarcadores , Western Blotting , Peso Corporal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/metabolismo , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5 , Miogenina/metabolismo , Miostatina , Tamanho do Órgão/fisiologia , Fator de Crescimento Transformador beta/genética
12.
Am J Physiol Endocrinol Metab ; 284(2): E377-81, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12388123

RESUMO

Myostatin inhibits skeletal muscle development. Therefore, we sought to determine whether larger body and muscle mass in male mice was associated with lower mRNA and protein expression of myostatin compared with females. Ten male and ten female mice of the C57 strain were killed at 16-18 wk of age, and their biceps femoris, gastrocnemius, and quadriceps femoris muscles were collected. Body and muscle masses were 40% heavier (P < 0.001) in males than in females. Northern analysis showed no difference in mRNA between males and females. In contrast, Western analysis showed that processed myostatin (26 kDa) was 40-60% lower (P < 0.001) in males compared with females. These data show first that decreased processed myostatin is a posttranscriptional and posttranslational event and, second, that decreased abundance of processed myostatin is associated with increased body mass and skeletal muscle mass in male compared with female mice.


Assuntos
Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Caracteres Sexuais , Fator de Crescimento Transformador beta/genética , Fatores Etários , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/crescimento & desenvolvimento , Miostatina , Tamanho do Órgão , RNA Mensageiro/análise
13.
Mol Cell Biol ; 22(20): 7066-82, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12242286

RESUMO

Myostatin is a negative regulator of myogenesis, and inactivation of myostatin leads to heavy muscle growth. Here we have cloned and characterized the bovine myostatin gene promoter. Alignment of the upstream sequences shows that the myostatin promoter is highly conserved during evolution. Sequence analysis of 1.6 kb of the bovine myostatin gene upstream region revealed that it contains 10 E-box motifs (E1 to E10), arranged in three clusters, and a single MEF2 site. Deletion and mutation analysis of the myostatin gene promoter showed that out of three important E boxes (E3, E4, and E6) of the proximal cluster, E6 plays a significant role in the regulation of a reporter gene in C(2)C(12) cells. We also demonstrate by band shift and chromatin immunoprecipitation assay that the E6 E-box motif binds to MyoD in vitro and in vivo. Furthermore, cotransfection experiments indicate that among the myogenic regulatory factors, MyoD preferentially up-regulates myostatin promoter activity. Since MyoD expression varies during the myoblast cell cycle, we analyzed the myostatin promoter activity in synchronized myoblasts and quiescent "reserve" cells. Our results suggest that myostatin promoter activity is relatively higher during the G(1) phase of the cell cycle, when MyoD expression levels are maximal. However, in the reserve cells, which lack MyoD expression, a significant reduction in the myostatin promoter activity is observed. Taken together, these results suggest that the myostatin gene is a downstream target gene of MyoD. Since the myostatin gene is implicated in controlling G(1)-to-S progression of myoblasts, MyoD could be triggering myoblast withdrawal from the cell cycle by regulating myostatin gene expression.


Assuntos
Regulação para Baixo , Sequências Hélice-Alça-Hélice , Proteína MyoD/metabolismo , Regiões Promotoras Genéticas/fisiologia , Transativadores , Fator de Crescimento Transformador beta/genética , Animais , Sítios de Ligação , Bovinos , Ciclo Celular , Linhagem Celular , Mapeamento Cromossômico , Clonagem Molecular , Sequência Conservada , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Fibroblastos/citologia , Fatores de Transcrição MEF2 , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína MyoD/genética , Fator Regulador Miogênico 5 , Fatores de Regulação Miogênica , Miostatina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA