Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 117: 240-247, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418555

RESUMO

The cytosolic DNA-sensing immune response is essential for recognizing and establishing an effective host immune response to pathogens. However, the importance of the cytosolic signalling molecules responsible for facilitating an appropriate immune response following infection with a DNA virus in shrimps remains unknown. Here, we report the discovery of the Penaeus monodon stimulator of interferon gene (PmSTING) and interferon regulatory factor (PmIRF) genes and their important roles in the host defense against viral infection. High expression levels of PmSTING transcripts were detected in the midgut, hepatopancreas, and hindgut, with lower levels in foregut, while PmIRF was highly expressed in the hindgut, foregut, and hepatopancreas of P. monodon. The mRNA expression level of both PmSTING and PmIRF was up-regulated in the foregut in response to white spot syndrome virus (WSSV; dsDNA virus) infection. RNA-interference-mediated gene silencing of PmSTING and PmIRF rendered shrimps to be more susceptible to WSSV infection; suppression of PmIRF decreased the mRNA transcript level of PmSTING; and silencing of the cytosolic sensor PmDDX41 suppressed both PmSTING and PmIRF gene transcript levels. Thus, PmSTING and PmIRF are likely to be important for the antiviral innate response against the dsDNA WSSV pathogen and may mediate the antiviral immune defenses via PmDDX41/PmSTING/PmIRF signaling cascade in P. monodon.


Assuntos
Proteínas de Artrópodes/imunologia , Infecções por Vírus de DNA/imunologia , Fatores Reguladores de Interferon/imunologia , Proteínas de Membrana/imunologia , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes/genética , Infecções por Vírus de DNA/veterinária , Fatores Reguladores de Interferon/genética , Proteínas de Membrana/genética , Penaeidae/genética , Penaeidae/imunologia , Penaeidae/virologia
3.
PLoS One ; 10(3): e0121073, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803442

RESUMO

Melanization mediated by the prophenoloxidase (proPO) activating system is a rapid immune response used by invertebrates against intruding pathogens. Several masquerade-like and serine proteinase homologues (SPHs) have been demonstrated to play an essential role in proPO activation in insects and crustaceans. In a previous study, we characterized the masquerade-like SPH, PmMasSPH1, in the black tiger shrimp Penaeus monodon as a multifunctional immune protein based on its recognition and antimicrobial activity against the Gram-negative bacteria Vibrio harveyi. In the present study, we identify a novel SPH, known as PmMasSPH2, composed of an N-terminal clip domain and a C-terminal SP-like domain that share high similarity to those of other insect and crustacean SPHs. We demonstrate that gene silencing of PmMasSPH1 and PmMasSPH2 significantly reduces PO activity, resulting in a high number of V. harveyi in the hemolymph. Interestingly, knockdown of PmMasSPH1 suppressed not only its gene transcript but also other immune-related genes in the proPO system (e.g., PmPPAE2) and antimicrobial peptides (e.g., PenmonPEN3, PenmonPEN5, crustinPm1 and Crus-likePm). The PmMasSPH1 and PmMasSPH2 also show binding activity to peptidoglycan (PGN) of Gram-positive bacteria. Using a yeast two-hybrid analysis and co-immunoprecipitation, we demonstrate that PmMasSPH1 specifically interacted with the final proteinase of the proPO cascade, PmPPAE2. Furthermore, the presence of both PmMasSPH1 and PmPPAE2 enhances PGN-induced PO activity in vitro. Taken together, these results suggest the importance of PmMasSPHs in the activation of the shrimp proPO system.


Assuntos
Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Penaeidae/enzimologia , Homologia de Sequência de Aminoácidos , Serina Proteases/química , Serina Proteases/metabolismo , Sequência de Aminoácidos , Animais , Parede Celular/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/fisiologia , Hemolinfa/enzimologia , Hemolinfa/microbiologia , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , Penaeidae/microbiologia , Peptidoglicano/metabolismo , Interferência de RNA , Análise de Sequência , Serina Proteases/deficiência , Serina Proteases/genética
4.
PLoS Pathog ; 10(4): e1004059, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722332

RESUMO

Invertebrates rely on innate immunity to respond to the entry of foreign microorganisms. One of the important innate immune responses in arthropods is the activation of prophenoloxidase (proPO) by a proteolytic cascade finalized by the proPO-activating enzyme (ppA), which leads to melanization and the elimination of pathogens. Proteolytic cascades play a crucial role in innate immune reactions because they can be triggered more quickly than immune responses that require altered gene expression. Caspases are intracellular proteases involved in tightly regulated limited proteolysis of downstream processes and are also involved in inflammatory responses to infections for example by activation of interleukin 1ß. Here we show for the first time a link between caspase cleavage of proPO and release of this protein and the biological function of these fragments in response to bacterial infection in crayfish. Different fragments from the cleavage of proPO were studied to determine their roles in bacterial clearance and antimicrobial activity. These fragments include proPO-ppA, the N-terminal part of proPO cleaved by ppA, and proPO-casp1 and proPO-casp2, the fragments from the N-terminus after cleavage by caspase-1. The recombinant proteins corresponding to all three of these peptide fragments exhibited bacterial clearance activity in vivo, and proPO-ppA had antimicrobial activity, as evidenced by a drastic decrease in the number of Escherichia coli in vitro. The bacteria incubated with the proPO-ppA fragment were agglutinated and their cell morphology was altered. Our findings show an evolutionary conserved role for caspase cleavage in inflammation, and for the first time show a link between caspase induced inflammation and melanization. Further we give a more detailed understanding of how the proPO system is regulated in time and place and a role for the peptide generated by activation of proPO as well as for the peptides resulting from Caspase 1 proteolysis.


Assuntos
Proteínas de Artrópodes/imunologia , Astacoidea/imunologia , Caspase 1/imunologia , Catecol Oxidase/imunologia , Precursores Enzimáticos/imunologia , Imunidade Inata/fisiologia , Peptídeos/imunologia , Proteólise , Animais , Proteínas de Artrópodes/metabolismo , Astacoidea/enzimologia , Caspase 1/metabolismo , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA