Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 55: 110574, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38988732

RESUMO

For mitigating the unintended environmental impacts associated with intensive farming across the world, it is crucial to understand the complex impacts of potential reductions in fertiliser use on multiple ecosystem services, including crop production, GHG emissions and changes in soil organic carbon (SOC) stocks. Using site specific spatial data and information, a novel integrated modelling approach using established agroecosystem models (SPACSYS and RothC) was implemented to evaluate the impacts of various fertiliser reductions (10 %, 30 % and 50 %) under current / baseline and projected (RCP2.6, RCP4.5 and RCP8.5) climate scenarios in a study catchment in southwest England. 48 unique combinations of soil types, climate conditions and fertiliser inputs were evaluated for five major arable crops (winter wheat, maize, winter barley, spring barley, winter oilseed rape) plus ryegrass. Modelled annual estimates of crop yields and biomass, emissions of gases with warming potentials (nitrous oxide, methane, carbon) and SOC stocks in the topsoil (0-30 cm) were tabulated for all combinations considered. These simulated data series could be further analysed to evaluate inter-annual variations and their implications for climate resilience and combined with additional data to quantify nutrient use efficiency and undertake cost- benefit analysis, and to contribute to inter-regional comparisons of fertiliser management at broad scale.

2.
PLoS One ; 19(7): e0306443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38976702

RESUMO

Rapid uptake of greenhouse gas (GHG) mitigation measures is central to reducing agricultural and land use emissions and meeting the UK Net Zero policy. The socioeconomic challenges and barriers to uptake are poorly understood, with yet unclear structural pathways to the uptake of GHG mitigation measures. Using an online survey of 201 agricultural land managers across the UK, and applying multiple linear regression and stepwise regression analysis, this research established farm and farmers' factors influencing perceptions and willingness to adopt GHG mitigation measures. The results consistently show that farm sector, farmers' business perception, and labour availability influence willingness to adopt GHG mitigation measures. Based on the farmers' qualitative feedback, other barriers to adoption include costs and concerns for profitability, lack of flexibility in land tenancy contracts, poor awareness and knowledge of the application of some GHG mitigation measures, perception about market demand e.g bioenergy crops, and scepticism about the future impacts of adopting varying GHG mitigation measures. In the midst of the ongoing net zero transition, this study identifies existing barriers to the uptake of GHG mitigation measures, and specifically, a substantial gap between farmers and the science of GHG mitigation measures and the need to incentivise a farm and farming community-led policy interventions to promote adoption of GHG mitigation measures.


Assuntos
Agricultura , Fazendeiros , Gases de Efeito Estufa , Reino Unido , Humanos , Fazendeiros/psicologia , Inquéritos e Questionários , Conservação dos Recursos Naturais/métodos
3.
Agron Sustain Dev ; 44(1): 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38161803

RESUMO

The UK Government has set an ambitious target of achieving a national "net-zero" greenhouse gas economy by 2050. Agriculture is arguably placed at the heart of achieving net zero, as it plays a unique role as both a producer of GHG emissions and a sector that has the capacity via land use to capture carbon (C) when managed appropriately, thus reducing the concentration of carbon dioxide (CO2) in the atmosphere. Agriculture's importance, particularly in a UK-specific perspective, which is also applicable to many other temperate climate nations globally, is that the majority of land use nationwide is allocated to farming. Here, we present a systematic review based on peer-reviewed literature and relevant "grey" reports to address the question "how can the agricultural sector in the UK reduce, or offset, its direct agricultural emissions at the farm level?" We considered the implications of mitigation measures in terms of food security and import reliance, energy, environmental degradation, and value for money. We identified 52 relevant studies covering major foods produced and consumed in the UK. Our findings indicate that many mitigation measures can indeed contribute to net zero through GHG emissions reduction, offsetting, and bioenergy production, pending their uptake by farmers. While the environmental impacts of mitigation measures were covered well within the reviewed literature, corresponding implications regarding energy, food security, and farmer attitudes towards adoption received scant attention. We also provide an open-access, informative, and comprehensive dataset for agri-environment stakeholders and policymakers to identify the most promising mitigation measures. This research is of critical value to researchers, land managers, and policymakers as an interim guideline resource while more quantitative evidence becomes available through the ongoing lab-, field-, and farm-scale trials which will improve the reliability of agricultural sustainability modelling in the future. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-023-00938-0.

4.
PLoS One ; 16(8): e0256219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415936

RESUMO

Temperate grassland soils store significant amounts of carbon (C). Estimating how much livestock grazing and manuring can influence grassland soil organic carbon (SOC) is key to improve greenhouse gas grassland budgets. The Rothamsted Carbon (RothC) model, although originally developed and parameterized to model the turnover of organic C in arable topsoil, has been widely used, with varied success, to estimate SOC changes in grassland under different climates, soils, and management conditions. In this paper, we hypothesise that RothC-based SOC predictions in managed grasslands under temperate moist climatic conditions can be improved by incorporating small modifications to the model based on existing field data from diverse experimental locations in Europe. For this, we described and evaluated changes at the level of: (1) the soil water function of RothC, (2) entry pools accounting for the degradability of the exogenous organic matter (EOM) applied (e.g., ruminant excreta), (3) the month-on-month change in the quality of C inputs coming from plant residues (i.e above-, below-ground plant residue and rhizodeposits), and (4) the livestock trampling effect (i.e., poaching damage) as a common problem in areas with higher annual precipitation. In order to evaluate the potential utility of these changes, we performed a simple sensitivity analysis and tested the model predictions against averaged data from four grassland experiments in Europe. Our evaluation showed that the default model's performance was 78% and whereas some of the modifications seemed to improve RothC SOC predictions (model performance of 95% and 86% for soil water function and plant residues, respectively), others did not lead to any/or almost any improvement (model performance of 80 and 46% for the change in the C input quality and livestock trampling, respectively). We concluded that, whereas adding more complexity to the RothC model by adding the livestock trampling would actually not improve the model, adding the modified soil water function and plant residue components, and at a lesser extent residues quality, could improve predictability of the RothC in managed grasslands under temperate moist climatic conditions.


Assuntos
Carbono/metabolismo , Mudança Climática , Ecossistema , Solo/química , Água/metabolismo , Animais , Europa (Continente) , Pradaria , Gases de Efeito Estufa/metabolismo , Gado , Esterco
5.
J Environ Qual ; 47(4): 644-653, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025039

RESUMO

Soil organic C (SOC) stock assessments at the regional scale under climate change scenarios are of paramount importance in implementing soil management practices to mitigate climate change. In this study, we estimated the changes in SOC sequestration under climate change conditions in agricultural land in Spain using the RothC model at the regional level. Four Intergovernmental Panel on Climate Change (IPCC) climate change scenarios (CGCM2-A2, CGCM2-B2, ECHAM4-A2, and ECHAM4-B2) were used to simulate SOC changes during the 2010 to 2100 period across a total surface area of 2.33 × 10 km. Although RothC predicted a general increase in SOC stocks by 2100 under all climate change scenarios, these SOC sequestration rates were smaller than those under baseline conditions. Moreover, this SOC response differed among climate change scenarios, and in some situations, some losses of SOC occurred. The greatest losses of C stocks were found mainly in the ECHAM4 (highest temperature rise and precipitation drop) scenarios and for rainfed and certain woody crops (lower C inputs). Under climate change conditions, management practices including no-tillage for rainfed crops and vegetation cover for woody crops were predicted to double and quadruple C sequestration rates, reaching values of 0.47 and 0.35 Mg C ha yr, respectively.


Assuntos
Carbono , Mudança Climática , Solo/química , Agricultura , Modelos Teóricos , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA