Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Res ; 252(Pt 4): 119079, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729408

RESUMO

The mineral composition of wild-growing mushroom species is influenced by various environmental factors, particularly the chemical properties of the soil/substrate. We hypothesised that element uptake might also correlate with taxonomic classification, potentially allowing us to predict contamination levels based on mushrooms within the same taxonomic rank. This study compared the mineral composition (Ag, As, Ba, Ca, Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Se, and Zn) of 16 saprotrophic mushroom species from 11 genera across 4 families and 2 orders. Among these were 13 edible and 3 inedible mushrooms, all collected from natural, wild stands in a forest in central-western Poland between 2017 and 2020. Phallus impudicus exhibited the highest mean content of Ba (together with Phallus hadriani) (6.63 and 8.61 mg kg-1, respectively), Ca (with Paralepista gilva and Stropharia rugosoannulata) (803, 735 and 768 mg kg-1, respectively), Cd (with Lycoperdon perlatum) (3.59 and 3.12 mg kg-1, respectively), Co (0.635 mg kg-1), and Fe (with P. hadriani and S. rugosoannulata) (476, 427 and 477 mg kg-1, respectively), while Macrolepiota mastoidea showed the highest content of Ag (1.96 mg kg-1), As (with Coprinus comatus) (1.56 and 1.62 mg kg-1, respectively) and Cu (with Macrolepiota procera and Chlorophyllum rhacodes) (192, 175 and 180 mg kg-1, respectively). Comparing the content of the analysed elements in the genera represented by at least two species, a similarity was observed, the same as the mean concentration in soil under these species. Soil characteristics could be a superior factor that overshadows the impact of the mushroom genus on the elements accumulation, obscuring its role as a determinant in this process. The results are not definitive evidence that belonging to a particular taxonomic rank is a prerequisite condition affecting the accumulation of all elements. A closer focus on this issue is needed.


Assuntos
Agaricales , Agaricales/química , Agaricales/classificação , Polônia , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Oligoelementos/análise , Minerais/análise
2.
J Appl Genet ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637489

RESUMO

The priority in oilseed rape (Brassica napus L.) research and breeding programs worldwide is to combine different features to develop cultivars tailored to specific applications of this crop. In this study, forms with a modified fatty acid composition of seed oil were successfully combined with a source of resistance to Plasmodiophora brassicae Wor., a harmful protist-causing clubroot. Three HO-type recombinants in F6-F12 generations with oleic acid content of 80.2-82.1% and one HOLL-type F6 inbred mutant recombinant (HOmut × LLmut), with a high oleic acid content (80.9%) and reduced linolenic acid content (2.3%), were crossed with the cultivar Tosca, resistant to several pathotypes of P. brassicae. The work involved genotyping with the use of DNA markers specific for allelic variants of desaturase genes responsible for the synthesis of oleic and linolenic fatty acids, CAPS (FAD2 desaturase, C18:1), and SNaPshot (FAD3 desaturase, C18:3), respectively. Of 350 progenies in the F3 generation, 192 (55%) were selected for further studies. Among them, 80 HO (≥ 72%) lines were identified, 10 of which showed resistance to at least one up to four P. brassicae pathotypes. Thirty lines in the selected progeny contained high oleic acid and less than 5% linolenic acid; eight of them belonged to the HOLL type conferring resistance to at least one pathotype. Two HO lines and two HOLL lines were resistant to four pathotypes. The resulting HO-CR and HOLL-CR inbred lines with altered seed oil fatty acid composition and resistance to P. brassicae represent unique oilseed rape material with the desired combination of valuable traits.

3.
Pathogens ; 13(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38668268

RESUMO

Plasmodiophora brassicae Woronin, an obligate biotrophic soil-borne pathogen, poses a significant threat to cruciferous crops worldwide by causing the devastating disease known as clubroot. Pathogenic variability in P. brassicae populations has been recognized since the 1930s based on its interactions with Brassica species. Over time, numerous sets of differential hosts have been developed and used worldwide to explore the pathogenic variability within P. brassicae populations. These sets encompass a range of systems, including the Williams system, the European Clubroot Differential set (ECD), the Brassica napus set, the Japanese Clubroot Differential Set, the Canadian Clubroot Differential Set (CCS), the Korean Clubroot Differential Set, and the Chinese Sinitic Clubroot Differential set (SCD). However, all existing systems possess both advantages as well as limitations regarding the detection of pathotypes from various Brassica species and their corresponding virulence pattern on Brassica genotypes. This comprehensive review aims to compare the main differential systems utilized in classifying P. brassicae pathotypes worldwide. Their strengths, limitations, and implications are evaluated, thereby enhancing our understanding of pathogenic variability.

5.
Pest Manag Sci ; 80(5): 2453-2460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37759372

RESUMO

BACKGROUND: Detection of the inoculum of phytopathogens greatly assists in the management of diseases, but is difficult for pathogens with airborne fungal propagules. Here, we present experiments to determine the abundance and distribution frequencies of the ascospores of Leptosphaeria (Plenodomus) species that were collected on the tapes of volumetric Hirst-type traps near oilseed rape fields in Poznan, Poland and Harpenden, UK. Fungal detection and species discrimination were achieved using a SYBR-Green quantitative polymerase chain reaction (qPCR) with two different pairs of primers previously reported to differentiate Leptosphaeria maculans (Plenodomus lingam) or L. biglobosa (P. biglobosus). RESULTS: Detection was successful even at fewer than five spores per m3 of air. The primer pairs differed in the correlation coefficients obtained between DNA yields and the daily abundance of ascospores that were quantified by microscopy on duplicate halves of the spore trap tapes. Important differences in the specificity and sensitivity of the published SYBR-Green assays were also found, indicating that the Liu primers did not detect L. biglobosa subclade 'canadensis', whereas the Mahuku primers detected L. biglobosa subclade 'canadensis' and also the closely related Plenodomus dezfulensis. CONCLUSIONS: Comparisons confirmed that application of qPCR assays to spore trap samples can be used for the early detection, discrimination and quantification of aerially dispersed L. maculans and L. biglobosa propagules before leaf spot symptoms are visible in winter oilseed rape fields. The specificity of the primers must be taken into consideration because the final result will greatly depend on the local population of the pathogen. © 2023 Society of Chemical Industry.


Assuntos
Brassica napus , Leptosphaeria , Phoma , Doenças das Plantas/microbiologia , Esporos Fúngicos
6.
Plant J ; 116(5): 1421-1440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37646674

RESUMO

Despite the identification of clubroot resistance genes in various Brassica crops our understanding of the genetic basis of immunity to Plasmodiophora brassicae infection in the model plant Arabidopsis thaliana remains limited. To address this issue, we performed a screen of 142 natural accessions and identified 11 clubroot-resistant Arabidopsis lines. Genome-wide association analysis identified several genetic loci significantly linked with resistance. Three genes from two of these loci were targeted for deletion by CRISPR/Cas9 mutation in resistant accessions Est-1 and Uod-1. Deletion of Resistance to Plasmodiophora brassicae 1 (RPB1) rendered both lines susceptible to the P. brassicae pathotype P1+. Further analysis of rpb1 knock-out Est-1 and Uod-1 lines showed that the RPB1 protein is required for activation of downstream defence responses, such as the expression of phytoalexin biosynthesis gene CYP71A13. RPB1 has recently been shown to encode a cation channel localised in the endoplasmic reticulum. The clubroot susceptible Arabidopsis accession Col-0 lacks a functional RPB1 gene; when Col-0 is transformed with RPB1 expression driven by its native promoter it is capable of activating RPB1 transcription in response to infection, but this is not sufficient to confer resistance. Transient expression of RPB1 in Nicotiana tabacum induced programmed cell death in leaves. We conclude that RPB1 is a critical component of the defence response to P. brassicae infection in Arabidopsis, acting downstream of pathogen recognition but required for the elaboration of effective resistance.


Assuntos
Arabidopsis , Brassica , Plasmodioforídeos , Arabidopsis/metabolismo , Doenças das Plantas , Estudo de Associação Genômica Ampla , Brassica/genética
7.
Metabolites ; 13(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367918

RESUMO

Species of the genus Plenodomus (Leptosphaeria) are phytopathogens of the Brassicaceae family, which includes oilseed rape. The spores of these fungi spread by airborne transmission, infect plants, and cause crop losses. The secondary metabolism of P. lingam and P. biglobosus was studied and compared, with the main focus being on the ability to produce Extracellular Polymeric Substances (EPS). In spite of the 1.5-2-fold faster growth rate of P. biglobosus on Czapek-Dox and other screening media, the average yield of EPS in this fungus was only 0.29 g/L, compared to that of P. lingam (0.43 g/L). In turn, P. biglobosus showed a higher capacity to synthesise IAA, i.e., 14 µg/mL, in contrast to <1.5 µg/mL produced by P. lingam. On the other hand, the P. lingam strains showed higher ß-glucanase activity (350-400 mU/mL), compared to 50-100 mU/mL in P. biglobosus. Invertase levels were similar in both species (250 mU/mL). The positive correlation between invertase activity and EPS yield contrasted with the absence of a correlation of EPS with ß-glucanase. Plenodomus neither solubilised phosphate nor used proteins from milk. All strains showed the ability to synthesise siderophores on CAS agar. P. biglobosus exhibited the highest efficiency of amylolytic and cellulolytic activity.

9.
Front Microbiol ; 13: 1033824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36519160

RESUMO

The soil microbiome contributes to several ecosystem processes. It plays a key role in sustainable agriculture, horticulture and forestry. In contrast to the vast number of studies focusing on soil bacteria, the amount of research concerning soil fungal communities is limited. This is despite the fact that fungi play a crucial role in the cycling of matter and energy on Earth. Fungi constitute a significant part of the pathobiome of plants. Moreover, many of them are indispensable to plant health. This group includes mycorrhizal fungi, superparasites of pathogens, and generalists; they stabilize the soil mycobiome and play a key role in biogeochemical cycles. Several fungal species also contribute to soil bioremediation through their uptake of high amounts of contaminants from the environment. Moreover, fungal mycelia stretch below the ground like blood vessels in the human body, transferring water and nutrients to and from various plants. Recent advances in high-throughput sequencing combined with bioinformatic tools have facilitated detailed studies of the soil mycobiome. This review discusses the beneficial effects of soil mycobiomes and their interactions with other microbes and hosts in both healthy and unhealthy ecosystems. It may be argued that studying the soil mycobiome in such a fashion is an essential step in promoting sustainable and regenerative agriculture.

10.
Pathogens ; 11(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36558774

RESUMO

Clubroot, caused by Plasmodiophora brassicae, is a crucial oilseed rape disease worldwide. Information on the virulence of P. brassicae populations is essential to apply disease control with proper clubroot-resistant cultivars. In 2016-2020, 84 isolates of P. brassicae were collected in the Czech Republic (CZ), Germany (DE), Poland (PL), and Sweden (SW). Pathotypes were designated using 17 Brassica hosts, including the European Clubroot Differentials (ECD), Somé set, and clubroot-resistant oilseed rape cv. Mendel. According to the ECD set, virulence analyses differentiated the isolates into 42 pathotypes. The most common pathotypes were 16/31/31 (in DE, PL, and SW) and 16/06/12 (in CZ, DE, and PL). Six pathotypes were found according to the Somé set, including 1-4 pathotypes per country. P1 was most prevalent in DE, PL, and SW, while P3 was abundant in CZ, DE, and PL. The current study provides clear evidence for a shift towards increased virulence in P. brassicae populations compared to previous studies. Several isolates overcame the resistance of cv. Mendel and of Brassica rapa genotypes ECD 01 to ECD 04. Considering all investigated samples, significant negative correlations were found between clubroot incidence and the frequency of oilseed rape in crop rotation, as for clubroot incidence and soil pH.

11.
Sci Rep ; 12(1): 8164, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581248

RESUMO

Narrow-leafed lupin (NLL, Lupinus angustifolius L.) is a legume plant cultivated for grain production and soil improvement. Worldwide expansion of NLL as a crop attracted various pathogenic fungi, including Colletotrichum lupini causing a devastating disease, anthracnose. Two alleles conferring improved resistance, Lanr1 and AnMan, were exploited in NLL breeding, however, underlying molecular mechanisms remained unknown. In this study, European NLL germplasm was screened with Lanr1 and AnMan markers. Inoculation tests in controlled environment confirmed effectiveness of both resistance donors. Representative resistant and susceptible lines were subjected to differential gene expression profiling. Resistance to anthracnose was associated with overrepresentation of "GO:0006952 defense response", "GO:0055114 oxidation-reduction process" and "GO:0015979 photosynthesis" gene ontology terms. Moreover, the Lanr1 (83A:476) line revealed massive transcriptomic reprogramming quickly after inoculation, whereas other lines showed such a response delayed by about 42 h. Defense response was associated with upregulation of TIR-NBS, CC-NBS-LRR and NBS-LRR genes, pathogenesis-related 10 proteins, lipid transfer proteins, glucan endo-1,3-beta-glucosidases, glycine-rich cell wall proteins and genes from reactive oxygen species pathway. Early response of 83A:476, including orchestrated downregulation of photosynthesis-related genes, coincided with the successful defense during fungus biotrophic growth phase, indicating effector-triggered immunity. Mandelup response was delayed and resembled general horizontal resistance.


Assuntos
Lupinus , Lupinus/genética , Oxirredução , Fotossíntese/genética , Melhoramento Vegetal , Folhas de Planta/genética
12.
Pathogens ; 11(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35055998

RESUMO

In contrast to the long-lasting taxonomic classification of Plenodomus lingam and P. biglobosus as one species, formerly termed Leptosphaeria maculans, both species form separate monophyletic groups, comprising sub-classes, differing considerably with epidemiology towards Brassicaceae plants. Considering the great differences between P. lingam and P. biglobosus, we hypothesized their metabolic capacities vary to a great extent. The experiment was done using the FF microplates (Biolog Inc., Hayward, CA, USA) containing 95 carbon sources and tetrazolium dye. The fungi P. lingam and P. biglobosus subclade 'brassicae' (3 isolates per group) were cultured on PDA medium for 6 weeks at 20 °C and then fungal spores were used as inoculum of microplates. The test was carried out in triplicate. We have demonstrated that substrate richness, calculated as the number of utilized substrates (measured at λ490 nm), and the number of substrates allowing effective growth of the isolates (λ750 nm), showed significant differences among tested species. The most efficient isolate of P. lingam utilized 36 carbon sources, whereas P. biglobosus utilized 60 substrates. Among them, 25-29 carbon sources for P. lingam and 34-48 substrates for P. biglobosus were efficiently used, allowing their growth. Cluster analysis based on Senath criteria divided P. biglobosus into two groups and P. lingam isolates formed one group (33% similarity). We deduce the similarities between the tested species help them coexist on the same host plant and the differences greatly contribute to their different lifestyles, with P. biglobosus being less specialized and P. lingam coevolving more strictly with the host plant.

13.
Toxins (Basel) ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822522

RESUMO

Fusarium head blight (FHB) is one of the most serious diseases of small-grain cereals worldwide, resulting in yield reduction and an accumulation of the mycotoxin deoxynivalenol (DON) in grain. Weather conditions are known to have a significant effect on the ability of fusaria to infect cereals and produce toxins. In the past 10 years, severe outbreaks of FHB, and grain DON contamination exceeding the EU health safety limits, have occurred in countries in the Baltic Sea region. In this study, extensive data from field trials in Sweden, Poland and Lithuania were analysed to identify the most crucial weather variables for the ability of Fusarium to produce DON. Models were developed for the prediction of DON contamination levels in harvested grain exceeding 200 µg kg-1 for oats, spring barley and spring wheat in Sweden and winter wheat in Poland, and 1250 µg kg-1 for spring wheat in Lithuania. These models were able to predict high DON levels with an accuracy of 70-81%. Relative humidity (RH) and precipitation (PREC) were identified as the weather factors with the greatest influence on DON accumulation in grain, with high RH and PREC around flowering and later in grain development and ripening correlated with high DON levels. High temperatures during grain development and senescence reduced the risk of DON accumulation. The performance of the models, based only on weather variables, was relatively accurate. In future studies, it might be of interest to determine whether inclusion of variables such as pre-crop, agronomic factors and crop resistance to FHB could further improve the performance of the models.


Assuntos
Avena/química , Grão Comestível/química , Contaminação de Alimentos/análise , Hordeum/química , Tricotecenos/análise , Triticum/química , Tempo (Meteorologia) , Avena/microbiologia , Países Bálticos , Grão Comestível/microbiologia , Hordeum/microbiologia , Lituânia , Modelos Teóricos , Polônia , Estações do Ano , Suécia , Tricotecenos/química , Triticum/microbiologia
14.
Insects ; 12(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066736

RESUMO

The hemp aphid Phorodon cannabis Passerini is a well- known (Asia, Europe) or newly emerging (North America) insect. It is a monophagous insect pest causing considerable damage in field and glasshouse cultivations. The aim of this work was to study the effects of meteorological (temperature) and agronomical (herbicide) factors on the biology of the hemp aphid. In one experiment, hemp plants were kept at constant temperatures ranging from 20 to 30 °C, and aphid survival and fecundity were measured. In a related experiment conducted at 20 °C, plants were treated with field-appropriate rates of a selective graminicide containing quizalofop-P-tefuryl (40 gL-1, 4.38%, HRAC group 1), commonly used to control weeds in hemp, and aphid enzyme activity was measured in addition to population parameters. We found that hemp aphids could live, feed and reproduce within the whole studied range of temperatures, demonstrating its great evolutionary plasticity. However, the optimal temperature for development was 25 °C, at which the insect lived and reproduced for 25 and 15 days, respectively, with an average fecundity of 7.5 nymphs per reproduction day. The herbicide treatment increased the activity of superoxide dismutase (SOD), catalase (CAT), ß-glucosidase, S-glutathione transferase (GST), oxidoreductive peroxidase (POD), and polyphenol oxidase (PPO) in the aphids, but only on certain days after treatment, which indicates a mild stress in aphid tissues, related to a higher reproduction and changed feeding behavior; aphids moved from the actively growing tips compared to untreated plants. The results of these experiments are discussed in terms of the impact on the future management of this pest.

15.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430123

RESUMO

Narrow-leafed lupin (Lupinus angustifolius L.) is a grain legume crop that is advantageous in animal nutrition due to its high protein content; however, livestock grazing on stubble may develop a lupinosis disease that is related to toxins produced by a pathogenic fungus, Diaporthe toxica. Two major unlinked alleles, Phr1 and PhtjR, confer L. angustifolius resistance to this fungus. Besides the introduction of these alleles into modern cultivars, the molecular mechanisms underlying resistance remained unsolved. In this study, resistant and susceptible lines were subjected to differential gene expression profiling in response to D. toxica inoculation, spanning the progress of the infection from the early to latent phases. High-throughput sequencing of stem transcriptome and PCR quantification of selected genes were performed. Gene Ontology term analysis revealed that an early (24 h) response in the resistant germplasm encompassed activation of genes controlling reactive oxygen species and oxylipin biosynthesis, whereas in the susceptible germplasm, it comprised induction of xyloglucan endotransglucosylases/hydrolases. During the first five days of the infection, the number of genes with significantly altered expressions was about 2.6 times higher in resistant lines than in the susceptible line. Global transcriptome reprogramming involving the activation of defense response genes occurred in lines conferring Phr1 and PhtjR resistance alleles about 4-8 days earlier than in the susceptible germplasm.


Assuntos
Resistência à Doença/genética , Lupinus/genética , Doenças das Plantas/genética , Transcriptoma/genética , Ascomicetos/patogenicidade , Perfilação da Expressão Gênica , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Lupinus/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Seleção Genética/genética
16.
Antioxidants (Basel) ; 9(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202647

RESUMO

The ability of hemp (Cannabis sativa L.) inflorescence extract to counteract lipid oxidation was studied in stripped linseed oil. The ethanolic extract was characterized in terms of terpenes (6.00 mg/mL), cannabidiol (4.99% w/w), phenolic compounds (1.80 mg gallic acid equivalents (GAE)/mL), antiradical, and metal ion-chelating activities (50% effective concentration (EC50) of 2.47 mg/mL and 0.39 mg/mL, respectively). The stripped linseed oil, used as control (CO), was mixed with hemp extract (HO) or α-tocopherol (EO) at a ratio of 0.6% (w/w) and stored for 7 days in darkness at 40 °C. Hemp extract reduced the oxidation and lipolysis processes. At the end of the storage, HO showed a significantly higher level of α-linolenic acid (ALA; 26.64 g/100 g), lower peroxide value (PV) (21.19 meq O2/kg oil), and lower hexanal content (7.67 mmol/kg oil) than those found in the control. In contrast, EO showed a marked lipolysis (the free fatty acids increased by 42.57%) and a noticeable oxidation, since the ALA content decreased by 2.10% and a PV of 50 meq O2/kg oil was observed. This study demonstrates that hemp inflorescences can be used as a source of natural antioxidants in vegetable oils and lipid products to retard their oxidation, especially those characterized by a high degree of unsaturation.

17.
J Sep Sci ; 43(14): 2817-2826, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32329135

RESUMO

Hemp (Cannabis sativa L.) has become widely used in several sectors due to the presence of various bioactive compounds such as terpenes and cannabidiol. In general, terpenes and cannabidiol content is determined separately, which is time consuming. Thus, a fast gas chromatography with flame ionization detection method was validated for simultaneous determination of both terpenes and cannabidiol in hemp. The method enabled a rapid detection of 29 different terpenes and cannabidiol within a total analysis time of 16 min, with satisfactory sensitivity (limit of detection = 0.03-0.27 µg/mL, limit of quantitation = 0.10-0.89 µg/mL). The inter- and intraday precision (RSD) was <7.82 and <3.59%, respectively. Recoveries at two spiked concentration levels (low, 3.15 µg/mL; high, 20.0 µg/mL) were determined on both apical leaves (78.55-101.52%) and inflorescences (77.52-107.10%). The reproducibility (RSD) was <5.94 and <5.51% in apical leaves and inflorescences, respectively. The proposed and validated method is highly sensitive, robust, fast, and accurate for determination of the main terpenes and cannabidiol in hemp and could be routinely used for quality control.


Assuntos
Canabidiol/análise , Cannabis/química , Terpenos/análise , Cromatografia Gasosa , Ionização de Chama , Folhas de Planta/química
18.
Pathogens ; 9(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419297

RESUMO

Clubroot is a damaging disease of oilseed rape and vegetable brassicas worldwide, caused by the soil-borne protist Plasmodiophora brassicae Wor. Due to the long life of resting spores, the assessment of the pathogen abundance in agricultural fields can serve as a guideline for disease control at the country-wide level or the regional scale. Between 2013 and 2019, we collected 431 soil samples from fields cultivated with Brassicaceae crops throughout 16 provinces of Poland. The samples were subjected to qPCR based analysis of P. brassicae DNA concentration. From these data, the spore loads and gene copies g-1 soil were calculated and used to produce an assessment of the current clubroot risk potential at a country-wide and regional scale. The country-wide map, showing the spread of the pathogen in agricultural soils, was made using ArcGis software package implementing the interpolation with the Inverse Distance Weight method. The calculation of gene copies specific to P. brassicae helped to formulate the recommendations for farmers in respect to the cultivation guidelines. It showed a high risk of yield losses in defined regions of north, south-west and central Poland and an urgent need to undertake intensive preventative measures.

19.
Ecotoxicol Environ Saf ; 162: 77-84, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29990742

RESUMO

Crop protection agents are widely used in modern agriculture and exert direct effects on non-target microorganisms such as yeasts. Yeasts abundantly colonize wheat grain and affect its chemical composition. They can also limit pathogen growth. This study evaluated the sensitivity of yeast communities colonizing winter wheat kernels to benzimidazole, strobilurin, triazole and morpholine fungicides, trinexapac-ethyl, a commercial mixture of o-nitrophenol+p-nitrophenol+5-nitroguaiacol, and chitosan applied during the growing season of winter wheat and in vitro in a diffusion test. A molecular identification analysis of yeasts isolated from winter wheat kernels was performed, and nucleotide polymorphisms in the CYTb gene (G143A) conferring resistance to strobilurin fungicides in yeast cells were identified. The size of yeast communities increased during grain storage, and the total counts of endophytic yeasts were significantly (85%) reduced following intensive fungicide treatment (fenpropimorph, a commercial mixture of pyraclostrobin, epoxiconazole and thiophanate-methyl). This study demonstrated that agrochemical residues in wheat grain can drive selection of yeast communities for reduced sensitivity to xenobiotics. A mutation in the CYTb gene (G143A) was observed in all analyzed isolates of the following azoxystrobin-resistant species: Aureobasidium pullulans, Debaryomyces hansenii, Candida albicans and C. sake. Agrochemicals tested in vitro were divided into four classes of toxicity to yeasts: (1) tebuconazole and a commercial mixture of flusilazole and carbendazim - most toxic to yeasts; (2) fenpropimorph and a commercial mixture of pyraclostrobin and epoxyconazole; (3) propiconazole, chitosan, thiophanate-methyl and a commercial mixture of o-nitrophenol, p-nitrophenol and 5-nitroguaiacol; (4) trinexapac-ethyl and azoxystrobin - least toxic to yeasts. It was found that agrochemicals can have an adverse effect on yeast abundance and the composition of yeast communities, mostly due to differences in fungicide resistance between yeast species, including the clinically significant C. albicans.


Assuntos
Agroquímicos/farmacologia , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Triticum/microbiologia , Leveduras/efeitos dos fármacos , Leveduras/genética , Agaricales/efeitos dos fármacos , Agaricales/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Benzimidazóis/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Carbamatos/farmacologia , Compostos de Epóxi/farmacologia , Testes de Sensibilidade Microbiana , Resíduos de Praguicidas/análise , Doenças das Plantas/microbiologia , Pirimidinas/farmacologia , Estações do Ano , Silanos/farmacologia , Estrobilurinas/farmacologia , Triazóis/farmacologia , Xenobióticos/farmacologia , Leveduras/classificação
20.
Front Microbiol ; 9: 707, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755421

RESUMO

Soil health, and the closely related terms of soil quality and fertility, is considered as one of the most important characteristics of soil ecosystems. The integrated approach to soil health assumes that soil is a living system and soil health results from the interaction between different processes and properties, with a strong effect on the activity of soil microbiota. All soils can be described using physical, chemical, and biological properties, but adaptation to environmental changes, driven by the processes of natural selection, are unique to the latter one. This mini review focuses on fungal biodiversity and its role in the health of managed soils as well as on the current methods used in soil mycobiome identification and utilization next generation sequencing (NGS) approaches. The authors separately focus on agriculture and horticulture as well as grassland and forest ecosystems. Moreover, this mini review describes the effect of land-use on the biodiversity and succession of fungi. In conclusion, the authors recommend a shift from cataloging fungal species in different soil ecosystems toward a more global analysis based on functions and interactions between organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA