Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Stimul ; 11(1): 134-157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29122535

RESUMO

We present device standards for low-power non-invasive electrical brain stimulation devices classified as limited output transcranial electrical stimulation (tES). Emerging applications of limited output tES to modulate brain function span techniques to stimulate brain or nerve structures, including transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial pulsed current stimulation (tPCS), have engendered discussion on how access to technology should be regulated. In regards to legal regulations and manufacturing standards for comparable technologies, a comprehensive framework already exists, including quality systems (QS), risk management, and (inter)national electrotechnical standards (IEC). In Part 1, relevant statutes are described for medical and wellness application. While agencies overseeing medical devices have broad jurisdiction, enforcement typically focuses on those devices with medical claims or posing significant risk. Consumer protections regarding responsible marketing and manufacture apply regardless. In Part 2 of this paper, we classify the electrical output performance of devices cleared by the United States Food and Drug Administration (FDA) including over-the-counter (OTC) and prescription electrostimulation devices, devices available for therapeutic or cosmetic purposes, and devices indicated for stimulation of the body or head. Examples include iontophoresis devices, powered muscle stimulators (PMS), cranial electrotherapy stimulation (CES), and transcutaneous electrical nerve stimulation (TENS) devices. Spanning over 13 FDA product codes, more than 1200 electrical stimulators have been cleared for marketing since 1977. The output characteristics of conventional tDCS, tACS, and tPCS techniques are well below those of most FDA cleared devices, including devices that are available OTC and those intended for stimulation on the head. This engineering analysis demonstrates that with regard to output performance and standing regulation, the availability of tDCS, tACS, or tPCS to the public would not introduce risk, provided such devices are responsibly manufactured and legally marketed. In Part 3, we develop voluntary manufacturer guidance for limited output tES that is aligned with current regulatory standards. Based on established medical engineering and scientific principles, we outline a robust and transparent technical framework for ensuring limited output tES devices are designed to minimize risks, while also supporting access and innovation. Alongside applicable medical and government activities, this voluntary industry standard (LOTES-2017) further serves an important role in supporting informed decisions by the public.


Assuntos
Estimulação Transcraniana por Corrente Contínua/instrumentação , Estimulação Transcraniana por Corrente Contínua/normas , Humanos , Gestão de Riscos , Estados Unidos , United States Food and Drug Administration/legislação & jurisprudência
2.
EMBO Rep ; 14(12): 1120-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24165923

RESUMO

R-spondin proteins sensitize cells to Wnt signalling and act as potent stem cell growth factors. Various membrane proteins have been proposed as potential receptors of R-spondin, including LGR4/5, membrane E3 ubiquitin ligases ZNRF3/RNF43 and several others proteins. Here, we show that R-spondin interacts with ZNRF3/RNF43 and LGR4 through distinct motifs. Both LGR4 and ZNRF3 binding motifs are required for R-spondin-induced LGR4/ZNRF3 interaction, membrane clearance of ZNRF3 and activation of Wnt signalling. Importantly, Wnt-inhibitory activity of ZNRF3, but not of a ZNRF3 mutant with reduced affinity to R-spondin, can be strongly suppressed by R-spondin, suggesting that R-spondin primarily functions by binding and inhibiting ZNRF3. Together, our results support a dual receptor model of R-spondin action, where LGR4/5 serve as the engagement receptor whereas ZNRF3/RNF43 function as the effector receptor.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Trombospondinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Motivos de Aminoácidos , Sítios de Ligação , Células HEK293 , Humanos , Ligação Proteica , Trombospondinas/química
3.
J Biol Chem ; 281(16): 11002-10, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16461343

RESUMO

Stimulation of mature T cells activates a downstream signaling cascade involving temporally and spatially regulated phosphorylation and dephosphorylation events mediated by protein-tyrosine kinases and phosphatases, respectively. PTPN22 (Lyp), a non-receptor protein-tyrosine phosphatase, is expressed exclusively in cells of hematopoietic origin, notably in T cells where it represses signaling through the T cell receptor. We used substrate trapping coupled with mass spectrometry-based peptide identification in an unbiased approach to identify physiological substrates of PTPN22. Several potential substrates were identified in lysates from pervanadate-stimulated Jurkat cells using PTPN22-D195A/C227S, an optimized substrate trap mutant of PTPN22. These included three novel PTPN22 substrates (Vav, CD3epsilon, and valosin containing protein) and two known substrates of PEP, the mouse homolog of PTPN22 (Lck and Zap70). T cell antigen receptor (TCR) zeta was also identified as a potential substrate in Jurkat lysates by direct immunoblotting. In vitro experiments with purified recombinant proteins demonstrated that PTPN22-D195A/C227S interacted directly with activated Lck, Zap70, and TCRzeta, confirming the initial substrate trap results. Native PTPN22 dephosphorylated Lck and Zap70 at their activating tyrosine residues Tyr-394 and Tyr-493, respectively, but not at the regulatory tyrosines Tyr-505 (Lck) or Tyr-319 (Zap70). Native PTPN22 also dephosphorylated TCRzeta in vitro and in cells, and its substrate trap variant co-immunoprecipitated with TCRzeta when both were coexpressed in 293T cells, establishing TCRzeta as a direct substrate of PTPN22.


Assuntos
Proteínas Tirosina Fosfatases/química , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , DNA Complementar/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Peptídeos/química , Fosforilação , Prolina/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 22 , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade por Substrato , Linfócitos T/metabolismo , Fatores de Tempo , Transfecção , Tirosina/química , Proteína-Tirosina Quinase ZAP-70/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA