Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853889

RESUMO

Objectives: Disialoganglioside 2 (GD2), overexpressed by cancers such as melanoma and neuroblastoma, is a tumor antigen for targeted therapy. The delivery of conventional IgG antibody technologies targeting GD2 is limited clinically by its co-expression on nerves that contributes to toxicity presenting as severe neuropathic pain. To improve the tumor selectivity of current GD2-targeting approaches, a next-generation bispecific antibody targeting GD2 and B7-H3 (CD276) was generated. Methods: Differential expression of human B7-H3 (hB7-H3) was transduced into GD2+ B78 murine melanoma cells and confirmed by flow cytometry. We assessed the avidity and selectivity of our GD2-B7-H3 targeting bispecific antibodies (INV34-6, INV33-2, and INV36-6) towards GD2+/hB7-H3- B78 cells relative to GD2+/hB7-H3+ B78 cells using flow cytometry and competition binding assays, comparing results an anti-GD2 antibody (dinutuximab, DINU). The bispecific antibodies, DINU, and a non-targeted bispecific control (bsAb CTRL) were conjugated with deferoxamine for radiolabeling with Zr-89 (t1/2 = 78.4 h). Using positron emission tomography (PET) studies, we evaluated the in vivo avidity and selectivity of the GD2-B7-H3 targeting bispecific compared to bsAb CTRL and DINU using GD2+/hB7-H3+ and GD2+/hB7-H3- B78 tumor models. Results: Flow cytometry and competition binding assays showed that INV34-6 bound with high avidity to GD2+/hB7-H3+ B78 cells with high avidity but not GD2+/hB7-H3+ B78 cells. In comparison, no selectivity between cell types was observed for DINU. PET in mice bearing the GD2+/hB7-H3- and GD2+/hB7-H3+ B78 murine tumor showed similar biodistribution in normal tissues for [89Zr]Zr-Df-INV34-6, [89Zr]Zr-Df-bsAb CTRL, and [89Zr]Zr-Df-DINU. Importantly, [89Zr]Zr-Df-INV34-6 tumor uptake was selective to GD2+/hB7-H3+ B78 over GD2+/hB7-H3- B78 tumors, and substantially higher to GD2+/hB7-H3+ B78 than the non-targeted [89Zr]Zr-Df-bsAb CTRL control. [89Zr]Zr-Df-DINU displayed similar uptake in both GD2+ tumor models, with uptake comparable to [89Zr]Zr-Df-INV34-6 in the GD2+/hB7-H3+ B78 model. Conclusion: The GD2-B7-H3 targeting bispecific antibodies successfully improved selectivity to cells expressing both antigens. This approach should address the severe toxicities associated with GD2-targeting therapies by reducing off-tumor GD2 binding in nerves. Continued improvements in bispecific antibody technologies will continue to transform the therapeutic biologics landscape.

2.
Sci Adv ; 10(15): eadj1444, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598637

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease resulting in irreversible scarring within the lungs. However, the lack of biomarkers that enable real-time assessment of disease activity remains a challenge in providing efficient clinical decision-making and optimal patient care in IPF. Fibronectin (FN) is highly expressed in fibroblastic foci of the IPF lung where active extracellular matrix (ECM) deposition occurs. Functional upstream domain (FUD) tightly binds the N-terminal 70-kilodalton domain of FN that is crucial for FN assembly. In this study, we first demonstrate the capacity of PEGylated FUD (PEG-FUD) to target FN deposition in human IPF tissue ex vivo. We subsequently radiolabeled PEG-FUD with 64Cu and monitored its spatiotemporal biodistribution via µPET/CT imaging in mice using the bleomycin-induced model of pulmonary injury and fibrosis. We demonstrated [64Cu]Cu-PEG-FUD uptake 3 and 11 days following bleomycin treatment, suggesting that radiolabeled PEG-FUD holds promise as an imaging probe in aiding the assessment of fibrotic lung disease activity.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Animais , Camundongos , Distribuição Tecidual , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Peptídeos/metabolismo , Bleomicina
3.
J Vis Exp ; (200)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955389

RESUMO

Integrated preclinical multimodal imaging systems, such as X-ray computed tomography (CT) combined with positron emission tomography (PET) or magnetic resonance imaging (MRI) combined with PET, are widely available and typically provide robustly co-registered volumes. However, separate devices are often needed to combine a standalone MRI with an existing PET-CT or to incorporate additional data from optical tomography or high-resolution X-ray microtomography. This necessitates image co-registration, which involves complex aspects such as multimodal mouse bed design, fiducial marker inclusion, image reconstruction, and software-based image fusion. Fiducial markers often pose problems for in vivo data due to dynamic range issues, limitations on the imaging field of view, difficulties in marker placement, or marker signal loss over time (e.g., from drying or decay). These challenges must be understood and addressed by each research group requiring image co-registration, resulting in repeated efforts, as the relevant details are rarely described in existing publications. This protocol outlines a general workflow that overcomes these issues. Although a differential transformation is initially created using fiducial markers or visual structures, such markers are not required in production scans. The requirements for the volume data and the metadata generated by the reconstruction software are detailed. The discussion covers achieving and verifying requirements separately for each modality. A phantom-based approach is described to generate a differential transformation between the coordinate systems of two imaging modalities. This method showcases how to co-register production scans without fiducial markers. Each step is illustrated using available software, with recommendations for commercially available phantoms. The feasibility of this approach with different combinations of imaging modalities installed at various sites is showcased.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Animais , Camundongos , Tomografia Computadorizada por Raios X/métodos , Tomografia por Emissão de Pósitrons/métodos , Marcadores Fiduciais , Software , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
4.
Cancer Biother Radiopharm ; 38(7): 458-467, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37022739

RESUMO

Background: Delivery of radiotherapeutic dose to recurrent head and neck cancer (HNC) is primarily limited by locoregional toxicity in conventional radiotherapy. As such, HNC patients stand to benefit from the conformal targeting of primary and remnant disease achievable with radiopharmaceutical therapies. In this study, the authors investigated the tumor targeting capacity of 131I-CLR1404 (iopofosine I-131) in various HNC xenograft mouse models and the impact of partial volume correction (PVC) on theranostic dosimetry based on 124I-CLR1404 (CLR 124) positron emission tomography (PET)/computed tomography (CT) imaging. Methods: Mice bearing flank tumor xenograft models of HNC (six murine cell line and six human patient derived) were intravenously administered 6.5-9.1 MBq of CLR 124 and imaged five times over the course of 6 d using microPET/CT. In vivo tumor uptake of CLR 124 was assessed and PVC for 124I was applied using a novel preclinical phantom. Using subject-specific theranostic dosimetry estimations for iopofosine I-131 based on CLR 124 imaging, a discrete radiation dose escalation study (2, 4, 6, and 8 Gy) was performed to evaluate tumor growth response to iopofosine I-131 relative to a single fraction of external beam radiation therapy (6 Gy). Results: PET imaging demonstrated consistent tumor selective uptake and retention of CLR 124 across all HNC xenograft models. Peak uptake of 4.4% ± 0.8% and 4.2% ± 0.4% was observed in squamous cell carcinoma-22B and UW-13, respectively. PVC application increased uptake measures by 47%-188% and reduced absolute differences between in vivo and ex vivo uptake measurements from 3.3% to 1.0 percent injected activity per gram. Tumor dosimetry averaged over all HNC models was 0.85 ± 0.27 Gy/MBq (1.58 ± 0.46 Gy/MBq with PVC). Therapeutic iopofosine I-131 studies demonstrated a variable, but linear relationship between iopofosine I-131 radiation dose and tumor growth delay (p < 0.05). Conclusions: Iopofosine I-131 demonstrated tumoricidal capacity in preclinical HNC tumor models and the theranostic pairing with CLR 124 presents a promising new treatment approach for personalizing administration of iopofosine I-131.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioisótopos do Iodo , Humanos , Animais , Camundongos , Radioisótopos do Iodo/uso terapêutico , Medicina de Precisão , Xenoenxertos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Modelos Animais de Doenças
5.
Nucl Med Biol ; 118-119: 108329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36805869

RESUMO

Neurotensin receptor 1 (NTSR1) can stimulate tumor proliferation through neurotensin (NTS) activation and are overexpressed by a variety of cancers. The high binding affinity of NTS/NTSR1 makes radiolabeled NTS derivatives interesting for cancer diagnosis and staging. Internalization of NTS/NTSR1 also suggests therapeutic application with high LET alpha particles and low energy electrons. We investigated the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo using murine models xenografted with NTSR1-positive HT29 human colorectal adenocarcinoma cells, and utilized [55Co]Co-NOTA-NT-20.3 for dosimetry. METHODS: Targeting properties and cytotoxicity of [55/58mCo]Co-NOTA-NT-20.3 were assessed with HT29 cells. Female nude mice were xenografted with HT29 tumors and administered [55Co or 58mCo]Co-NOTA-NT-20.3 to evaluate pharmacokinetics or for therapy, respectively. Dosimetry calculations followed the Medical Internal Radiation Dose (MIRD) formalism and human absorbed dose rate per unit activity were obtained from OpenDose. The pilot therapy study consisted of two groups (each N = 3) receiving 110 ± 15 MBq and 26 ± 6 MBq [58mCo]Co-NOTA-NT-20.3 one week after tumor inoculation, and control (N = 3). Tumor sizes and masses were measured twice a week after therapy. Complete blood count and kidney histology were also performed to assess toxicity. RESULTS: HPLC measured radiochemical purity of [55,58mCo]Co-NOTA-NT-20.3 > 99 %. Labeled compounds retained NTS targeting properties. [58mCo]Co-NOTA-NT-20.3 exhibited cytotoxicity for HT29 cells and was >15× more potent than [58mCo]CoCl2. Xenografted tumors responded modestly to administered doses, but mice showed no signs of radiotoxicity. Absorbed dose to tumor and kidney with 110 MBq [58mCo]Co-NOTA-NT-20.3 were 0.6 Gy and 0.8 Gy, respectively, and other organs received less than half of the absorbed dose to tumor. Off-target radiation dose from cobalt-58g was small but reduces the therapeutic window. CONCLUSION: The enhanced in vitro cytotoxicity and high tumor-to-background led us to investigate the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo. Although we were unable to induce tumor response commensurate with [177Lu]Lu-NT127 (NLys-Lys-Pro-Tyr-Tle-Leu) studies involving similar time-integrated activity, the absence of observed toxicity may constitute an opportunity for targeting vectors with improved uptake and/or retention to avoid the aftereffects of other high-LET radioactive emissions. Future studies with higher uptake, activity and/or multiple dosing regimens are warranted. The theranostic approach employed in this work was crucial for dosimetry analysis.


Assuntos
Medicina de Precisão , Receptores de Neurotensina , Feminino , Camundongos , Humanos , Animais , Receptores de Neurotensina/metabolismo , Projetos Piloto , Camundongos Nus , Neurotensina/uso terapêutico , Neurotensina/metabolismo
6.
J Biomech ; 147: 111434, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638579

RESUMO

This study sought to 1) investigate the spatial distribution of mineral density of dog dentin using µ-CT and 2) characterize the relationship between the elastic modulus and mineral density of dog dentin using nanoindentation and µ-CT. Maxillary canine teeth of 10 mature dogs were scanned with a µ-CT then sectioned in the transverse and vertical planes and tested using nanoindentation. Spatial distribution of mineral density and elastic modulus was quantified. Results demonstrated significant spatial variation in mineral density and elastic modulus. Mineral density and elastic modulus generally increased from the dentin-pulp interface to the dentino-enamel junction and from the crown base to the crown tip. Significant site dependent correlations between mineral density and elastic modulus were determined (0.021 > R2 > 0.408). The results of this study suggest that while mineral density is a mediator of elastic modulus, other mediators such as collagen content may contribute to the mechanical behavior of dog dentin.


Assuntos
Dentina , Dente , Animais , Cães , Módulo de Elasticidade , Dentina/diagnóstico por imagem , Minerais , Tomografia Computadorizada por Raios X , Dureza
7.
Ann Anat ; 246: 152041, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526093

RESUMO

Canine tooth shape is known to vary with diet and killing behavior in wild animals and the relationship between form and function is driven in part by selective pressure. However, comparative investigation of the domestic dog (Canis lupus familiaris) is of interest. How do they compare to their wild counterparts? This study sought to quantify and characterize the morphology of the canine tooth in the domestic dog, and to provide a preliminary investigation into the variance in canine tooth morphology across individual dogs of varying breeds. Three-dimensional (3D) models generated from micro-computed tomography (µ-CT) studies of 10 mature maxillary canine teeth from the domesticated dog (Canis lupus familiaris) were used to quantify key morphological features and evaluate variance among dogs. Results show that, utilizing modern imaging and model building software, the morphology of the canine tooth can be comprehensively characterized and quantified. Morphological variables such as second moment of area and section modulus (geometrical parameters related to resistance to bending), as well as aspect ratio, ridge sharpness, cusp sharpness and enamel thickness are optimized in biomechanically critical areas of the tooth crown to balance form and function. Tooth diameter, second moment of area, section modulus, cross sectional area, tooth volume and length as well as enamel thickness are highly correlated with body weight. In addition, we found preliminary evidence of morphological variance across individual dogs. Quantification of these features provide insight into the balance of form and function of the canine tooth in wild and domesticated canids. In addition, results suggest that variance between dogs exist in some morphological features and most morphological features are highly correlated with body weight.


Assuntos
Dente Canino , Lobos , Animais , Cães , Dente Canino/diagnóstico por imagem , Microtomografia por Raio-X , Animais Selvagens
8.
Eur J Nucl Med Mol Imaging ; 49(11): 3705-3716, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35556159

RESUMO

PURPOSE: The lack of effective molecular biomarkers to monitor idiopathic pulmonary fibrosis (IPF) activity or treatment response remains an unmet clinical need. Herein, we determined the utility of fibroblast activation protein inhibitor for positron emission tomography (FAPI PET) imaging in a mouse model of pulmonary fibrosis. METHODS: Pulmonary fibrosis was induced by intratracheal administration of bleomycin (1 U/kg) while intratracheal saline was administered to control mice. Subgroups from each cohort (n = 3-5) underwent dynamic 1 h PET/CT after intravenously injecting FAPI-46 radiolabeled with gallium-68 ([68 Ga]Ga-FAPI-46) at 7 days and 14 days following disease induction. Animals were sacrificed following imaging for ex vivo gamma counting and histologic correlation. [68 Ga]Ga-FAPI-46 uptake was quantified and reported as percent injected activity per cc (%IA/cc) or percent injected activity (%IA). Lung CT density in Hounsfield units (HU) was also correlated with histologic examinations of lung fibrosis. RESULTS: CT only detected differences in the fibrotic response at 14 days post-bleomycin administration. [68 Ga]Ga-FAPI-46 lung uptake was significantly higher in the bleomycin group than in control subjects at 7 days and 14 days. Significantly (P = 0.0012) increased [68 Ga]Ga-FAPI-46 lung uptake in the bleomycin groups at 14 days (1.01 ± 0.12%IA/cc) vs. 7 days (0.33 ± 0.09%IA/cc) at 60 min post-injection of the tracer was observed. These findings were consistent with an increase in both fibrinogenesis and FAP expression as seen in histology. CONCLUSION: CT was unable to assess disease activity in a murine model of IPF. Conversely, FAPI PET detected both the presence and activity of lung fibrogenesis, making it a promising tool for assessing early disease activity and evaluating the efficacy of therapeutic interventions in lung fibrosis patients.


Assuntos
Fibrose Pulmonar Idiopática , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Bleomicina , Radioisótopos de Gálio , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons , Quinolinas
9.
Methods Mol Biol ; 2418: 129-151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119664

RESUMO

In vivo molecular imaging of estrogen receptor alpha (ER) can be performed via positron emission tomography (PET) using ER-specific radioligands, such as 16α-[18F]fluoro-17ß-estradiol (18F-FES). 18F-FES is a radiopharmaceutical recently approved by the United States Food and Drug Administration for use with PET imaging to detect ER+ lesions in patients with recurrent or metastatic breast cancer as an adjunct to biopsy. 18F-FES PET imaging has been used in clinical studies and preclinical research to assess whole-body ER protein expression and ligand binding function across multiple metastatic sites, to demonstrate inter-tumoral and temporal heterogeneity of ER expression, to quantify the pharmacodynamic effects of ER antagonist treatment, and to predict endocrine therapy response. 18F-FES PET has also been studied for imaging ER in endometrial and ovarian cancer. This chapter details the experimental protocol for 18F-FES PET imaging of ER in preclinical tumor xenograft models. Consistent adherence to key methodologic details will facilitate obtaining meaningful and reproducible 18F-FES PET preclinical imaging results, which could yield additional insight for clinical trials regarding imaging biomarkers and oncologic therapy.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Neoplasias da Mama/metabolismo , Estradiol , Feminino , Humanos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Receptores de Estrogênio/metabolismo
10.
Front Radiol ; 2: 895088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37492655

RESUMO

The gut microbiome profoundly influences brain structure and function. The gut microbiome is hypothesized to play a key role in the etiopathogenesis of neuropsychiatric and neurodegenerative illness; however, the contribution of an intact gut microbiome to quantitative neuroimaging parameters of brain microstructure and function remains unknown. Herein, we report the broad and significant influence of a functional gut microbiome on commonly employed neuroimaging measures of diffusion tensor imaging (DTI), neurite orientation dispersion and density (NODDI) imaging, and SV2A 18F-SynVesT-1 synaptic density PET imaging when compared to germ-free animals. In this pilot study, we demonstrate that mice, in the presence of a functional gut microbiome, possess higher neurite density and orientation dispersion and decreased synaptic density when compared to age- and sex-matched germ-free mice. Our results reveal the region-specific structural influences and synaptic changes in the brain arising from the presence of intestinal microbiota. Further, our study highlights important considerations for the development of quantitative neuroimaging biomarkers for precision imaging in neurologic and psychiatric illness.

11.
Radiat Res ; 195(6): 522-540, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826741

RESUMO

Brain metastases develop in over 60% of advanced melanoma patients and negatively impact quality of life and prognosis. In a murine melanoma model, we previously showed that an in situ vaccination (ISV) regimen, combining radiation treatment and intratumoral (IT) injection of immunocytokine (IC: anti-GD2 antibody fused to IL2), along with the immune checkpoint inhibitor anti-CTLA-4, robustly eliminates peripheral flank tumors but only has modest effects on co-occurring intracranial tumors. In this study, we investigated the ability of low-dose radiation to the brain to potentiate anti-tumor immunity against a brain tumor when combined with ISV + anti-CTLA-4. B78 (GD2+, immunologically "cold") melanoma tumor cells were implanted into the flank and the right striatum of the brain in C57BL/6 mice. Flank tumors (50-150 mm3) were treated following a previously optimized ISV regimen [radiation (12 Gy × 1, treatment day 1), IT-IC (50 µg daily, treatment days 6-10), and anti-CTLA-4 (100 µg, treatment days 3, 6, 9)]. Mice that additionally received whole-brain radiation treatment (WBRT, 4 Gy × 1) on day 15 demonstrated significantly increased survival compared to animals that received ISV + anti-CTLA-4 alone, WBRT alone or no treatment (control) (P < 0.001, log-rank test). Timing of WBRT was critical, as WBRT administration on day 1 did not significantly enhance survival compared to ISV + anti-CTLA-4, suggesting that the effect of WBRT on survival might be mediated through immune modulation and not just direct tumor cell cytotoxicity. Modest increases in T cells (CD8+ and CD4+) and monocytes/macrophages (F4/80+) but no changes in FOXP3+ regulatory T cells (Tregs), were observed in brain melanoma tumors with addition of WBRT (on day 15) to ISV + anti-CTLA-4. Cytokine multiplex immunoassay revealed distinct changes in both intracranial melanoma and contralateral normal brain with addition of WBRT (day 15) to ISV + anti-CTLA-4, with notable significant changes in pro-inflammatory (e.g., IFNγ, TNFα and LIX/CXCL5) and suppressive (e.g., IL10, IL13) cytokines as well as chemokines (e.g., IP-10/CXCL10 and MIG/CXCL9). We tested the ability of the alkylphosphocholine analog, NM600, to deliver immunomodulatory radiation to melanoma brain tumors as a targeted radionuclide therapy (TRT). Yttrium-86 (86Y) chelated to NM600 was delivered intravenously by tail vein to mice harboring flank and brain melanoma tumors, and PET imaging demonstrated specific accumulation up to 72 h at each tumor site (∼12:1 brain tumor/brain and ∼8:1 flank tumor/muscle). When NM600 was chelated to therapeutic ß-particle-emitting 90Y and administered on treatment day 13, T-cell infiltration and cytokine profiles were altered in melanoma brain tumor, like that observed for WBRT. Overall, our results demonstrate that addition of low-dose radiation, timed appropriately with ISV administration to tumors outside the brain, significantly increases survival in animals co-harboring melanoma brain tumors. This observation has potentially important translational implications as a treatment strategy for increasing the response of tumors in the brain to systemically administered immunotherapies.


Assuntos
Neoplasias Encefálicas/imunologia , Imunidade/efeitos da radiação , Melanoma Experimental/imunologia , Vacinação , Animais , Neoplasias Encefálicas/prevenção & controle , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade/efeitos dos fármacos , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Proteína Tumoral 1 Controlada por Tradução
12.
J Nucl Med ; 62(4): 500-506, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32859700

RESUMO

Activating mutations in the estrogen receptor (ER) α-gene (ESR1) result in constitutive transcriptional activity in the absence of estrogen and are associated with endocrine resistance in metastatic ER-positive (+) breast cancer. It is not known how activating ESR1 mutations may alter the predictive values of molecular imaging agents for endocrine therapy response. This study investigated the effect of an activating ESR1 mutation on pretreatment 18F-fluoroestradiol (18F-FES) uptake and early assessment of endocrine therapy response using 18F-FDG and 18F-fluorofuranylnorprogesterone (18F-FFNP) PET/CT imaging of tumor glucose metabolism and progesterone receptor (PR) expression, respectively. Methods: ER+, PR+ T47D breast cancer cells expressing wild-type (WT) ER or an activating ESR1 mutation, Y537S-ER, were used to generate tumor xenografts in ovariectomized female immunodeficient mice supplemented with 17ß-estradiol. Tumor growth curves were determined in the presence or absence of estrogen and for ethanol vehicle control or fulvestrant treatment, a selective ER degrader. Pretreatment 18F-FES uptake was compared between Y537S-ER and WT-ER tumors. Longitudinal PET/CT imaging with 18F-FFNP and 18F-FDG was performed before and 7-9 d after the start of endocrine therapy with fulvestrant. Radiopharmaceutical uptake in Y537S-ER and WT-ER tumors was compared between baseline and follow-up scans. Statistical significance was determined using paired t testing for longitudinal imaging and 2-way ANOVA for the 18F-FFNP tissue biodistribution assay. Results: Y537S-ER xenografts showed estrogen-independent growth, whereas WT-ER tumors grew only with estrogen. Fulvestrant treatment for 28 d significantly reduced tumor volumes for WT-ER but only stabilized volumes for Y537S-ER. Baseline 18F-FES uptake did not significantly differ between WT-ER and Y537S-ER tumors. Fulvestrant treatment induced a similar early metabolic response for both WT-ER and Y537S-ER tumors. 18F-FFNP uptake in WT-ER tumors was significantly reduced after 7 d of fulvestrant treatment; however, this reduction did not occur in Y537S-ER tumors, which showed no significant change between baseline and follow-up PET/CT. Conclusion: Molecular imaging of PR expression dynamics could be a noninvasive approach for early identification of reduced effectiveness of endocrine therapy resulting from activating ESR1 mutations.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Estradiol/farmacologia , Estradiol/uso terapêutico , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Feminino , Fluordesoxiglucose F18 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Estudos Longitudinais , Camundongos , Resultado do Tratamento
13.
Cell Rep ; 29(10): 3009-3018.e4, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801069

RESUMO

Metabolic flexibility allows cells to adapt to various environments and limits the efficacy of metabolic drugs. Therapeutic targeting of cancer metabolism relies on defining limiting requirements and vulnerabilities in the highly dynamic metabolic network. Here, we characterize the metabolic reprogramming and identify cancer-specific metabolic vulnerabilities in response to the pharmacological inhibition of mitochondrial complex I. Our work reveals the adaptation mechanism in malignant lymphocytes providing resistance against the biguanides phenformin and metformin by transcriptionally reprogramming glucose metabolism. Metabolic adaptation to complex I inhibition is mediated by mitochondrial reactive oxygen species (mROS) serving as a mitochondrial stress signal activating hypoxia-inducible factor-1a (HIF-1a). Inhibition of the mROS/HIF-1a axis through antioxidants or direct suppression of HIF-1a selectively disrupts metabolic adaptation and survival during complex I dysfunction in malignant lymphocytes. Our results identify HIF-1a signaling as a critical factor in resistance against biguanide-induced mitochondrial dysfunction, allowing selective targeting of metabolic pathways in leukemia and lymphoma.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linfócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adolescente , Adulto , Idoso , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/fisiologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Células Jurkat , Linfócitos/efeitos dos fármacos , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Adulto Jovem
14.
J Biol Chem ; 294(51): 19475-19485, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31690632

RESUMO

Increased carbohydrate consumption increases hepatic de novo lipogenesis, which has been linked to the development of chronic metabolic diseases, including obesity, hepatic steatosis, and insulin resistance. Stearoyl CoA desaturase 1 (SCD1) is a critical lipogenic enzyme that catalyzes the synthesis of two monounsaturated fatty acids, oleate and palmitoleate, from the saturated fatty acids stearate and palmitate, respectively. SCD1-deficient mouse models are protected against diet-induced adiposity, hepatic steatosis, and hyperglycemia. However, the mechanism of this protection by SCD1 deficiency is unclear. Using liver-specific SCD1 knockout (LKO) mice fed a high-carbohydrate, low-fat diet, we show that hepatic SCD1 deficiency increases systemic glucose uptake. Hepatic SCD1 deficiency enhanced glucose transporter type 1 (GLUT1) expression in the liver and also up-regulated GLUT4 and adiponectin expression in adipose tissue. The enhanced glucose uptake correlated with increased liver expression and elevated plasma levels of fibroblast growth factor 21 (FGF21), a hepatokine known to increase systemic insulin sensitivity and regulate whole-body lipid metabolism. Feeding LKO mice a triolein-supplemented but not tristearin-supplemented high-carbohydrate, low-fat diet reduced FGF21 expression and plasma levels. Consistently, SCD1 inhibition in primary hepatocytes induced FGF21 expression, which was repressed by treatment with oleate but not palmitoleate. Moreover, deletion of the transcriptional coactivator PPARγ coactivator 1α (PGC-1α) reduced hepatic and plasma FGF21 and white adipocyte tissue-specific GLUT4 expression and raised plasma glucose levels in LKO mice. These results suggest that hepatic oleate regulates glucose uptake in adipose tissue either directly or partially by modulating the hepatic PGC-1α-FGF21 axis.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Estearoil-CoA Dessaturase/genética , Adiponectina/sangue , Adiposidade , Animais , Metabolismo dos Carboidratos , Dieta , Ácidos Graxos Monoinsaturados/metabolismo , Fígado Gorduroso/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ácido Oleico/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estearoil-CoA Dessaturase/metabolismo
15.
Nutrients ; 11(6)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212794

RESUMO

Oxidative stress is involved in the pathogenesis and progression of inflammatory bowel disease. Consumption of aronia berry inhibits T cell transfer colitis, but the antioxidant mechanisms pertinent to immune function are unclear. We hypothesized that aronia berry consumption could inhibit inflammation by modulating the antioxidant function of immunocytes and gastrointestinal tissues. Colitis was induced in recombinase activating gene-1 deficient (Rag1-/-) mice injected with syngeneic CD4+CD62L+ naïve T cells. Concurrent with transfer, mice consumed either 4.5% w/w aronia berry-supplemented or a control diet for five weeks. Aronia berry inhibited intestinal inflammation evidenced by lower colon weight/length ratios, 2-deoxy-2-[18F]fluoro-d-glucose (FDG) uptake, mRNA expressions of tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) in the colon. Aronia berry also suppressed systemic inflammation evidenced by lower FDG uptake in the spleen, liver, and lung. Colitis induced increased colon malondialdehyde (MDA), decreased colon glutathione peroxidase (GPx) activity, reduced glutathione (rGSH) level, and suppressed expression of antioxidant enzymes in the colon and mesenteric lymph node (MLN). Aronia berry upregulated expression of antioxidant enzymes, prevented colitis-associated depletion of rGSH, and maintained GPx activity. Moreover, aronia berry modulated mitochondria-specific antioxidant activity and decreased splenic mitochondrial H2O2 production in colitic mice. Thus, aronia berry consumption inhibits oxidative stress in the colon during T cell transfer colitis because of its multifaceted antioxidant function in both the cytosol and mitochondria of immunocytes.


Assuntos
Antioxidantes/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Colite/imunologia , Suplementos Nutricionais , Frutas , Estresse Oxidativo/efeitos dos fármacos , Photinia , Animais , Colite/induzido quimicamente , Modelos Animais de Doenças , Inflamação , Interferon gama/metabolismo , Intestinos/imunologia , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
16.
Neoplasia ; 21(6): 615-626, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31078067

RESUMO

Heterogeneous populations within a tumor have varying metabolic profiles, which can muddle the interpretation of bulk tumor imaging studies of treatment response. Although methods to study tumor metabolism at the cellular level are emerging, these methods provide a single time point "snapshot" of tumor metabolism and require a significant time and animal burden while failing to capture the longitudinal metabolic response of a single tumor to treatment. Here, we investigated a novel method for longitudinal, single-cell tracking of metabolism across heterogeneous tumor cell populations using optical metabolic imaging (OMI), which measures autofluorescence of metabolic coenzymes as a report of metabolic activity. We also investigated whether in vivo cellular metabolic heterogeneity can be accurately captured using tumor-derived three-dimensional organoids in a genetically engineered mouse model of breast cancer. OMI measurements of response to paclitaxel and the phosphatidylinositol-3-kinase inhibitor XL147 in tumors and organoids taken at single cell resolution revealed parallel shifts in metaboltruic heterogeneity. Interestingly, these previously unappreciated heterogeneous metabolic responses in tumors and organoids could not be attributed to tumor cell fate or varying leukocyte content within the microenvironment, suggesting that heightened metabolic heterogeneity upon treatment is largely due to heterogeneous metabolic shifts within tumor cells. Together, these studies show that OMI revealed remarkable heterogeneity in response to treatment, which could provide a novel approach to predict the presence of potentially unresponsive tumor cell subpopulations lurking within a largely responsive bulk tumor population, which might otherwise be overlooked by traditional measurements.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Organoides/diagnóstico por imagem , Análise de Célula Única , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Imagem Óptica , Organoides/metabolismo , Quinoxalinas/farmacologia , Sulfonamidas/farmacologia , Microambiente Tumoral/genética
17.
J Nucl Med ; 60(9): 1247-1252, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30850489

RESUMO

The purpose of this study was to determine the effect of estrogen receptor-α gene (ESR1) mutations at the tyrosine (Y) 537 amino acid residue within the ligand binding domain on 18F-fluoroestradiol (18F-FES) binding and in vivo tumor uptake compared with wild-type (WT)-estrogen receptor α (ER). Methods: ER-negative MDA-MB-231 breast cancer cells were used to generate stable cell lines that express WT-ER, Y537S, or Y537C mutant ER. Receptor expression and localization were confirmed by Western blot and immunofluorescence, respectively. ER transcriptional function was measured using an estrogen response element-luciferase reporter gene assay and quantitative polymerase chain reaction analysis of ER-regulated endogenous target genes. Saturation binding and competition assays were performed to determine equilibrium dissociation constant (Kd) and half maximal inhibitory concentration (IC50) values. 18F-FES uptake was measured in tumor xenografts grown in female athymic nude mice by small-animal PET/CT imaging and tissue biodistribution using 5.55 MBq (150 µCi) of 18F-FES. A 10-fold-lower injected dose of 0.555 MBq (15 µCi) of 18F-FES was also used for tissue biodistribution. Statistical significance was determined using ANOVA. Results: Y537S and Y537C mutations resulted in increased ER transcriptional activity in the absence of estrogen compared with WT-ER (11.48 ± 2.42 fold; P = 0.0002, and 5.89 ± 0.94 fold; P = 0.04, respectively). Constitutive ER activation of two target genes (PGR and TFF1) in the absence of estrogen was also observed in Y537S- and Y537C-ER cells compared with WT-ER. Kd values for 18F-FES were 0.98 ± 0.54 nM for Y537S-ER (P = 0.27) and 0.24 ± 0.03 nM for Y537C-ER (P = 0.95) compared with 0.07 ± 0.03 nM for WT-ER. IC50 values were 0.22 ± 0.09 nM for Y537S-ER (P = 0.97), 0.18 ± 0.09 nM for Y537C-ER (P = 0.99), and 0.19 ± 0.11 nM for WT-ER. Tumor xenografts expressing Y537S-ER (mean percentage injected dose per gram, 1.45 ± 0.06; P = 0.77) and Y537C-ER (2.09 ± 0.20; P = 0.21) had similar 18F-FES uptake compared with WT-ER (1.68 ± 0.12). Comparable 18F-FES uptake between Y537S-, Y537C-, and WT-ER xenografts was also observed using a 10-fold-lower injected dose with the tissue biodistribution assay. Conclusion: Since tumoral uptake of 18F-FES is not significantly impacted by Y537S-ER or Y537C-ER mutations, the potential diagnostic utility of 18F-FES PET imaging is expected to be equally valid for patients with or without these activating ESR1 mutations.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Estradiol/análogos & derivados , Receptor alfa de Estrogênio/genética , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Linhagem Celular Tumoral , Estradiol/química , Feminino , Humanos , Concentração Inibidora 50 , Cinética , Ligantes , Camundongos , Camundongos Nus , Transplante de Neoplasias , Ligação Proteica , Distribuição Tecidual
18.
J Nucl Med ; 60(10): 1414-1420, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30926646

RESUMO

Cancer is the second leading cause of death for children between the ages of 5 and 14 y. For children diagnosed with metastatic or recurrent solid tumors, for which the utility of external-beam radiotherapy is limited, the prognosis is particularly poor. The availability of tumor-targeting radiopharmaceuticals for molecular radiotherapy (MRT) has demonstrated improved outcomes in these patient populations, but options are nonexistent or limited for most pediatric solid tumors. 18-(p-iodophenyl)octadecylphosphocholine (CLR1404) is a novel antitumor alkyl phospholipid ether analog that broadly targets cancer cells. In this study, we evaluated the in vivo pharmacokinetics of 124I-CLR1404 (CLR 124) and estimated theranostic dosimetry for 131I-CLR1404 (CLR 131) MRT in murine xenograft models of the pediatric solid tumors neuroblastoma, rhabdomyosarcoma, and Ewing sarcoma. Methods: Tumor-bearing mice were imaged with small-animal PET/CT to evaluate the whole-body distribution of CLR 124 and, correcting for differences in radioactive decay, predict that of CLR 131. Image volumes representing CLR 131 provided input for Geant4 Monte Carlo simulations to calculate subject-specific tumor dosimetry for CLR 131 MRT. Pharmacokinetics for CLR 131 were extrapolated to adult and pediatric humans to estimate normal-tissue dosimetry. In neuroblastoma, a direct comparison of CLR 124 with 124I-metaiodobenzylguanidine (124I-MIBG) in an MIBG-avid model was performed. Results: In vivo pharmacokinetics of CLR 124 showed selective uptake and prolonged retention across all pediatric solid tumor models investigated. Subject-specific tumor dosimetry for CLR 131 MRT presents a correlative relationship with tumor-growth delay after CLR 131 MRT. Peak uptake of CLR 124 was, on average, 22% higher than that of 124I-MIBG in an MIBG-avid neuroblastoma model. Conclusion: CLR1404 is a suitable theranostic scaffold for dosimetry and therapy with potentially broad applicability in pediatric oncology. Given the ongoing clinical trials for CLR 131 in adults, these data support the development of pediatric clinical trials and provide detailed dosimetry that may lead to improved MRT treatment planning.


Assuntos
Radioisótopos do Iodo/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , 3-Iodobenzilguanidina/farmacologia , Animais , Linhagem Celular Tumoral , Criança , Simulação por Computador , Modelos Animais de Doenças , Humanos , Iodobenzenos/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Método de Monte Carlo , Recidiva Local de Neoplasia , Transplante de Neoplasias , Éteres Fosfolipídicos/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Radiometria , Compostos Radiofarmacêuticos , Nanomedicina Teranóstica
19.
J Nucl Med ; 60(2): 220-226, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30030339

RESUMO

The purpose of this study was to evaluate the ability of 21-18F-fluoro-16α,17α-[(R)-(1'-α-furylmethylidene)dioxy]-19-norpregn-4-ene-3,20-dione (18F-FFNP) to measure alterations in progesterone receptor (PR) protein level and isoform expression in response to estradiol challenge. Methods: T47D human breast cancer cells and female mice-bearing T47D tumor xenografts were treated with 17ß-estradiol (E2) to increase PR expression. 18F-FFNP uptake was measured using cell uptake and tissue biodistribution assays. MDA-MB-231 breast cancer clonal cell lines were generated that express the A or B isoforms of human PR. PR protein levels, transcriptional function, and subcellular localization were determined. In vitro 18F-FFNP binding was measured via saturation and competitive binding curves. In vivo 18F-FFNP uptake was measured using tumor xenografts and positron emission tomography. Statistical significance was determined using analysis of variance and t-tests. Results: After 48 and 72 h of E2, 18F-FFNP uptake in T47D cells was maximally increased compared to both vehicle and 24 h E2 treatment (p<0.0001 vs ethanol; P = 0.02 and P = 0.0002 vs 24 h for 48 and 72 h, respectively). T47D tumor xenografts in mice treated with 72 h E2 had maximal 18F-FFNP uptake compared to ethanol-treated mice (11.3±1.4 vs 5.2±0.81 %ID/g; P = 0.002). Corresponding tumor-to-muscle uptake ratios were 4.1±0.6, 3.9±0.5, and 2.3±0.4 for 48 h E2, 72 h E2, and ethanol-treated mice, respectively. There was no significant preferential 18F-FFNP binding or uptake by PR-A versus PR-B in the PR isoform-specific cell lines and tumor xenografts. Conclusion:18F-FFNP is capable of measuring estrogen-induced shifts in total PR expression in human breast cancer cells and tumor xenografts with equivalent isoform binding.

20.
Nat Commun ; 9(1): 5349, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559435

RESUMO

In vivo vagus nerve stimulation holds great promise in regulating food intake for obesity treatment. Here we present an implanted vagus nerve stimulation system that is battery-free and spontaneously responsive to stomach movement. The vagus nerve stimulation system comprises a flexible and biocompatible nanogenerator that is attached on the surface of stomach. It generates biphasic electric pulses in responsive to the peristalsis of stomach. The electric signals generated by this device can stimulate the vagal afferent fibers to reduce food intake and achieve weight control. This strategy is successfully demonstrated on rat models. Within 100 days, the average body weight is controlled at 350 g, 38% less than the control groups. This work correlates nerve stimulation with targeted organ functionality through a smart, self-responsive system, and demonstrated highly effective weight control. This work also provides a concept in therapeutic technology using artificial nerve signal generated from coordinated body activities.


Assuntos
Regulação do Apetite , Ingestão de Alimentos , Obesidade/terapia , Estômago/fisiologia , Estimulação do Nervo Vago/instrumentação , Estimulação do Nervo Vago/métodos , Nervo Vago/metabolismo , Células 3T3 , Animais , Linhagem Celular , Camundongos , Peristaltismo/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA