Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EFSA J ; 20(1): e07025, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35126734

RESUMO

Following a request of the European Commission, EFSA and ANSES, beneficiary of the EFSA tasking grant on horizon scanning for plant pests (GP/EFSA/ALPHA/2017/02), developed a methodology to order by risk non-regulated pests recently identified through the monitoring of media and scientific literature. The ranking methodology proposed at the end of the pilot phase was based on the scoring of pests under evaluation following 16 criteria related to the steps of the pest risk assessment scheme. The multicriteria matrix of scores obtained was then submitted to the multicriteria analysis method PROMETHEE. The pilot methodology was tested on a limited number of pests (14 pests identified during the monitoring activity, and 4 'control' pests whose well-known risk should be reflected either in a positive or negative score), then applied on all non-regulated pests identified through the media and scientific literature monitoring in the first 2 years of the project. After having collected feedback from the targeted final users (EU risk managers), the methodology underwent a few refinements: (i) implementation of the methodology to a set of already assessed reference pests from EFSA opinions, (ii) exclusions of three criteria from the scoring phase, (iii) identification of pests proposed for further action ('positive' pests), using a threshold defined after scoring the reference pests.

2.
EFSA J ; 17(4): e05668, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32626289

RESUMO

Article 42 of the European Regulation (EU) 2016/2031, on the protective measures against pests of plants, introduces the concept of 'high risk plants, plant products and other objects' that are identified on the basis of a preliminary assessment to be followed by a commodity risk assessment. Following a request of the European Commission, this Guidance was developed to establish the methodology to be followed when performing a commodity risk assessment for high risk commodities (high risk plants, plant products and other objects). The commodity risk assessment performed by EFSA will be based on the information provided by the National Plant Protection Organisations of non-EU countries requesting a lifting of import prohibition of a high risk commodity. Following international standards on pest risk analysis, this Guidance describes a two-step approach for the assessment of pest risk associated with a specified commodity. In the first step, pests, associated with the commodity, that require risk mitigation measures are identified. In the second step, the overall efficacy of proposed risk reduction options for each pest is evaluated. A conclusion on the pest-freedom status of the commodity is achieved. The method requires key uncertainties to be identified.

3.
EFSA J ; 16(1): e05122, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625670

RESUMO

To meet the general requirement for transparency in EFSA's work, all its scientific assessments must consider uncertainty. Assessments must say clearly and unambiguously what sources of uncertainty have been identified and what is their impact on the assessment conclusion. This applies to all EFSA's areas, all types of scientific assessment and all types of uncertainty affecting assessment. This current Opinion describes the principles and methods supporting a concise Guidance Document on Uncertainty in EFSA's Scientific Assessment, published separately. These documents do not prescribe specific methods for uncertainty analysis but rather provide a flexible framework within which different methods may be selected, according to the needs of each assessment. Assessors should systematically identify sources of uncertainty, checking each part of their assessment to minimise the risk of overlooking important uncertainties. Uncertainty may be expressed qualitatively or quantitatively. It is neither necessary nor possible to quantify separately every source of uncertainty affecting an assessment. However, assessors should express in quantitative terms the combined effect of as many as possible of identified sources of uncertainty. The guidance describes practical approaches. Uncertainty analysis should be conducted in a flexible, iterative manner, starting at a level appropriate to the assessment and refining the analysis as far as is needed or possible within the time available. The methods and results of the uncertainty analysis should be reported fully and transparently. Every EFSA Panel and Unit applied the draft Guidance to at least one assessment in their work area during a trial period of one year. Experience gained in this period resulted in improved guidance. The Scientific Committee considers that uncertainty analysis will be unconditional for EFSA Panels and staff and must be embedded into scientific assessment in all areas of EFSA's work.

4.
EFSA J ; 16(1): e05123, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625671

RESUMO

Uncertainty analysis is the process of identifying limitations in scientific knowledge and evaluating their implications for scientific conclusions. It is therefore relevant in all EFSA's scientific assessments and also necessary, to ensure that the assessment conclusions provide reliable information for decision-making. The form and extent of uncertainty analysis, and how the conclusions should be reported, vary widely depending on the nature and context of each assessment and the degree of uncertainty that is present. This document provides concise guidance on how to identify which options for uncertainty analysis are appropriate in each assessment, and how to apply them. It is accompanied by a separate, supporting opinion that explains the key concepts and principles behind this Guidance, and describes the methods in more detail.

5.
EFSA J ; 16(7): e05327, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32625968

RESUMO

The European Food Safety Authority has produced this Guidance on human and animal health aspects (Part 1) of the risk assessment of nanoscience and nanotechnology applications in the food and feed chain. It covers the application areas within EFSA's remit, e.g. novel foods, food contact materials, food/feed additives and pesticides. The Guidance takes account of the new developments that have taken place since publication of the previous Guidance in 2011. Potential future developments are suggested in the scientific literature for nanoencapsulated delivery systems and nanocomposites in applications such as novel foods, food/feed additives, biocides, pesticides and food contact materials. Therefore, the Guidance has taken account of relevant new scientific studies that provide more insights to physicochemical properties, exposure assessment and hazard characterisation of nanomaterials. It specifically elaborates on physicochemical characterisation of nanomaterials in terms of how to establish whether a material is a nanomaterial, the key parameters that should be measured, the methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. It also details the aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vivo/in vitro toxicological studies are discussed and a tiered framework for toxicological testing is outlined. It describes in vitro degradation, toxicokinetics, genotoxicity as well as general issues relating to testing of nanomaterials. Depending on the initial tier results, studies may be needed to investigate reproductive and developmental toxicity, immunotoxicity, allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes/mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis, and provides recommendations for further research in this area.

6.
EFSA J ; 15(1): e04658, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625254

RESUMO

The Scientific Committee (SC) reconfirms that the benchmark dose (BMD) approach is a scientifically more advanced method compared to the NOAEL approach for deriving a Reference Point (RP). Most of the modifications made to the SC guidance of 2009 concern the section providing guidance on how to apply the BMD approach. Model averaging is recommended as the preferred method for calculating the BMD confidence interval, while acknowledging that the respective tools are still under development and may not be easily accessible to all. Therefore, selecting or rejecting models is still considered as a suboptimal alternative. The set of default models to be used for BMD analysis has been reviewed, and the Akaike information criterion (AIC) has been introduced instead of the log-likelihood to characterise the goodness of fit of different mathematical models to a dose-response data set. A flowchart has also been inserted in this update to guide the reader step-by-step when performing a BMD analysis, as well as a chapter on the distributional part of dose-response models and a template for reporting a BMD analysis in a complete and transparent manner. Finally, it is recommended to always report the BMD confidence interval rather than the value of the BMD. The lower bound (BMDL) is needed as a potential RP, and the upper bound (BMDU) is needed for establishing the BMDU/BMDL per ratio reflecting the uncertainty in the BMD estimate. This updated guidance does not call for a general re-evaluation of previous assessments where the NOAEL approach or the BMD approach as described in the 2009 SC guidance was used, in particular when the exposure is clearly smaller (e.g. more than one order of magnitude) than the health-based guidance value. Finally, the SC firmly reiterates to reconsider test guidelines given the expected wide application of the BMD approach.

7.
EFSA J ; 15(3): e04737, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32625443

RESUMO

EFSA is committed to assess and communicate the risks occurring in the food and feed chain from farm to fork and to provide other forms of scientific advice. This work, carried out by EFSA since its inception, has resulted in the adoption of thousands of scientific assessments. EFSA is obliged to re-assess past assessments in specific regulatory contexts such as those on food and feed additives, active substances in plant protection products and genetically modified food and feed. In other sectors, the consideration for updating past EFSA scientific assessments is taken on an ad hoc basis mainly depending on specific requests by risk managers or on EFSA self-tasking. If safety is potentially at stake in any area within EFSA's remit, the readiness to update past scientific assessments is important to keep EFSA at the forefront of science and to promote an effective risk assessment. Although this task might be very complex and resource demanding, it is fundamental to EFSA's mission. The present EFSA Scientific Committee opinion deals with scientific motivations and criteria to contribute to the timely updating of EFSA scientific assessments. It is recognised that the decision for updating should be agreed following careful consideration of all the relevant elements by the EFSA management, in collaboration with risk managers and stakeholders. The present opinion addresses the scientific approaches through which it would be possible for EFSA to increase the speed and effectiveness of the acquisition of new data, as well as, to improve the consequent evaluations to assess the relevance and reliability of new data in the context of contributing to the better definition of whether to update past scientific assessments.

8.
EFSA J ; 15(5): e04849, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32625502

RESUMO

Following a request from the European Commission to EFSA, the EFSA Scientific Committee (SC) prepared a guidance for the risk assessment of substances present in food intended for infants below 16 weeks of age. In its approach to develop this guidance, the EFSA SC took into account, among others, (i) an exposure assessment based on infant formula as the only source of nutrition; (ii) knowledge of organ development in human infants, including the development of the gut, metabolic and excretory capacities, the brain and brain barriers, the immune system, the endocrine and reproductive systems; (iii) the overall toxicological profile of the substance identified through the standard toxicological tests, including critical effects; (iv) the relevance for the human infant of the neonatal experimental animal models used. The EFSA SC notes that during the period from birth up to 16 weeks, infants are expected to be exclusively fed on breast milk and/or infant formula. The EFSA SC views this period as the time where health-based guidance values for the general population do not apply without further considerations. High infant formula consumption per body weight is derived from 95th percentile consumption. The first weeks of life is the time of the highest relative consumption on a body weight basis. Therefore, when performing an exposure assessment, the EFSA SC proposes to use the high consumption value of 260 mL/kg bw per day. A decision tree approach is proposed that enables a risk assessment of substances present in food intended for infants below 16 weeks of age. The additional information needed when testing substances present in food for infants below 16 weeks of age and the approach to be taken for the risk assessment are on a case-by-case basis, depending on whether the substance is added intentionally to food and is systemically available.

9.
EFSA J ; 15(8): e04970, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32625631

RESUMO

EFSA requested its Scientific Committee to prepare a guidance document providing generic issues and criteria to consider biological relevance, particularly when deciding on whether an observed effect is of biological relevance, i.e. is adverse (or shows a beneficial health effect) or not. The guidance document provides a general framework for establishing the biological relevance of observations at various stages of the assessment. Biological relevance is considered at three main stages related to the process of dealing with evidence: Development of the assessment strategy. In this context, specification of agents, effects, subjects and conditions in relation to the assessment question(s): Collection and extraction of data; Appraisal and integration of the relevance of the agents, subjects, effects and conditions, i.e. reviewing dimensions of biological relevance for each data set. A decision tree is developed to assist in the collection, identification and appraisal of relevant data for a given specific assessment question to be answered.

10.
EFSA J ; 15(8): e04971, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32625632

RESUMO

EFSA requested the Scientific Committee to develop a guidance document on the use of the weight of evidence approach in scientific assessments for use in all areas under EFSA's remit. The guidance document addresses the use of weight of evidence approaches in scientific assessments using both qualitative and quantitative approaches. Several case studies covering the various areas under EFSA's remit are annexed to the guidance document to illustrate the applicability of the proposed approach. Weight of evidence assessment is defined in this guidance as a process in which evidence is integrated to determine the relative support for possible answers to a question. This document considers the weight of evidence assessment as comprising three basic steps: (1) assembling the evidence into lines of evidence of similar type, (2) weighing the evidence, (3) integrating the evidence. The present document identifies reliability, relevance and consistency as three basic considerations for weighing evidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA