Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Syst ; 14(12): 1074-1086.e7, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37995680

RESUMO

Hypoxia-induced upregulation of HIF1α triggers adipose tissue dysfunction and insulin resistance in obese patients. HIF1α closely interacts with PPARγ, the master regulator of adipocyte differentiation and lipid accumulation, but there are conflicting results regarding how this interaction controls the excessive lipid accumulation that drives adipocyte dysfunction. To directly address these conflicts, we established a differentiation system that recapitulated prior seemingly opposing observations made across different experimental settings. Using single-cell imaging and coarse-grained mathematical modeling, we show how HIF1α can both promote and repress lipid accumulation during adipogenesis. Our model predicted and our experiments confirmed that the opposing roles of HIF1α are isolated from each other by the positive-feedback-mediated upregulation of PPARγ that drives adipocyte differentiation. Finally, we identify three factors: strength of the differentiation cue, timing of hypoxic perturbation, and strength of HIF1α expression changes that, when considered together, provide an explanation for many of the previous conflicting reports.


Assuntos
Adipócitos , PPAR gama , Humanos , PPAR gama/metabolismo , Retroalimentação , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Lipídeos
2.
J Biol Chem ; 299(4): 104599, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907438

RESUMO

Immune cells adopt a variety of metabolic states to support their many biological functions, which include fighting pathogens, removing tissue debris, and tissue remodeling. One of the key mediators of these metabolic changes is the transcription factor hypoxia-inducible factor 1α (HIF-1α). Single-cell dynamics have been shown to be an important determinant of cell behavior; however, despite the importance of HIF-1α, little is known about its single-cell dynamics or their effect on metabolism. To address this knowledge gap, here we optimized a HIF-1α fluorescent reporter and applied it to study single-cell dynamics. First, we showed that single cells are likely able to differentiate multiple levels of prolyl hydroxylase inhibition, a marker of metabolic change, via HIF-1α activity. We then applied a physiological stimulus known to trigger metabolic change, interferon-γ, and observed heterogeneous, oscillatory HIF-1α responses in single cells. Finally, we input these dynamics into a mathematical model of HIF-1α-regulated metabolism and discovered a profound difference between cells exhibiting high versus low HIF-1α activation. Specifically, we found cells with high HIF-1α activation are able to meaningfully reduce flux through the tricarboxylic acid cycle and show a notable increase in the NAD+/NADH ratio compared with cells displaying low HIF-1α activation. Altogether, this work demonstrates an optimized reporter for studying HIF-1α in single cells and reveals previously unknown principles of HIF-1α activation.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Ativação Transcricional , Animais , Camundongos , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Interferon gama/farmacologia , Mitocôndrias/metabolismo , Modelos Biológicos , Prolil Hidroxilases/metabolismo , Células RAW 264.7 , Análise de Célula Única/métodos , Ativação Transcricional/efeitos dos fármacos
3.
Front Immunol ; 10: 755, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031756

RESUMO

Cells must be able to interpret signals they encounter and reliably generate an appropriate response. It has long been known that the dynamics of transcription factor and kinase activation can play a crucial role in selecting an individual cell's response. The study of cellular dynamics has expanded dramatically in the last few years, with dynamics being discovered in novel pathways, new insights being revealed about the importance of dynamics, and technological improvements increasing the throughput and capabilities of single cell measurements. In this review, we highlight the important developments in this field, with a focus on the methods used to make new discoveries. We also include a discussion on improvements in methods for engineering and measuring single cell dynamics and responses. Finally, we will briefly highlight some of the many challenges and avenues of research that are still open.


Assuntos
Microscopia/métodos , Análise de Célula Única/métodos , Animais , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos
4.
Nat Protoc ; 13(1): 155-169, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29266096

RESUMO

Although kinases are important regulators of many cellular processes, measuring their activity in live cells remains challenging. We have developed kinase translocation reporters (KTRs), which enable multiplexed measurements of the dynamics of kinase activity at a single-cell level. These KTRs are composed of an engineered construct in which a kinase substrate is fused to a bipartite nuclear localization signal (bNLS) and nuclear export signal (NES), as well as to a fluorescent protein for microscopy-based detection of its localization. The negative charge introduced by phosphorylation of the substrate is used to directly modulate nuclear import and export, thereby regulating the reporter's distribution between the cytoplasm and nucleus. The relative cytoplasmic versus nuclear fluorescence of the KTR construct (the C/N ratio) is used as a proxy for the kinase activity in living, single cells. Multiple KTRs can be studied in the same cell by fusing them to different fluorescent proteins. Here, we present a protocol to execute and analyze live-cell microscopy experiments using KTRs. We describe strategies for development of new KTRs and procedures for lentiviral expression of KTRs in a cell line of choice. Cells are then plated in a 96-well plate, from which multichannel fluorescent images are acquired with automated time-lapse microscopy. We provide detailed guidance for a computational analysis and parameterization pipeline. The entire procedure, from virus production to data analysis, can be completed in ∼10 d.


Assuntos
Imagem Molecular/métodos , Sinais de Localização Nuclear/metabolismo , Fosfotransferases , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única/métodos , Núcleo Celular/química , Núcleo Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Genes Reporter , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Sinais de Localização Nuclear/genética , Fosforilação , Fosfotransferases/análise , Fosfotransferases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
5.
Plant Cell Rep ; 33(8): 1307-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24801678

RESUMO

KEY MESSAGE: Genetic modulation of the carotenogenesis in I. germanica 'Fire Bride' by ectopic expression of a crtB gene causes several flower parts to develop novel orange and pink colors. Flower color in tall bearded irises (Iris germanica L.) is determined by two distinct biochemical pathways; the carotenoid pathway, which imparts yellow, orange and pink hues and the anthocyanin pathway, which produces blue, violet and maroon flowers. Red-flowered I. germanica do not exist in nature and conventional breeding methods have thus far failed to produce them. With a goal of developing iris cultivars with red flowers, we transformed a pink iris I. germanica, 'Fire Bride', with a bacterial phytoene synthase gene (crtB) from Pantoea agglomerans under the control of the promoter region of a gene for capsanthin-capsorubin synthase from Lilium lancifolium (Llccs). This approach aimed to increase the flux of metabolites into the carotenoid biosynthetic pathway and lead to elevated levels of lycopene and darker pink or red flowers. Iris callus tissue ectopically expressing the crtB gene exhibited a color change from yellow to pink-orange and red, due to accumulation of lycopene. Transgenic iris plants, regenerated from the crtB-transgenic calli, showed prominent color changes in the ovaries (green to orange), flower stalk (green to orange), and anthers (white to pink), while the standards and falls showed no significant differences in color when compared to control plants. HPLC and UHPLC analysis confirmed that the color changes were primarily due to the accumulation of lycopene. In this study, we showed that ectopic expression of a crtB can be used to successfully alter the color of certain flower parts in I. germanica 'Fire Bride' and produce new flower traits.


Assuntos
Carotenoides/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Iridaceae/crescimento & desenvolvimento , Pantoea/enzimologia , Vias Biossintéticas , Cor , Flores/enzimologia , Flores/genética , Expressão Gênica , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Iridaceae/enzimologia , Iridaceae/genética , Licopeno , Especificidade de Órgãos , Pantoea/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Transgenes
6.
Plant Cell Physiol ; 53(11): 1899-912, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23008421

RESUMO

The orange color of tiger lily (Lolium lancifolium 'Splendens') flowers is due, primarily, to the accumulation of two κ-xanthophylls, capsanthin and capsorubin. An enzyme, known as capsanthin-capsorubin synthase (CCS), catalyzes the conversion of antheraxanthin and violaxanthin into capsanthin and capsorubin, respectively. We cloned the gene for capsanthin-capsorubin synthase (Llccs) from flower tepals of L. lancifolium by the rapid amplification of cDNA ends (RACE) with a heterologous non-degenerate primer that was based on the sequence of a gene for lycopene ß-cyclase (lcyB). The full-length cDNA of Llccs was 1,785 bp long and contained an open reading frame of 1,425 bp that encoded a polypeptide of 474 amino acids with a predicted N-terminal plastid-targeting sequence. Analysis by reverse transcription-PCR (RT-PCR) revealed that expression of Llccs was spatially and temporally regulated, with expression in flower buds and flowers of L. lancifolium but not in vegetative tissues. Stable overexpression of the Llccs gene in callus tissue of Iris germanica, which accumulates several xanthophylls including violaxanthin, the precursor of capsorubin, resulted in transgenic callus whose color had changed from its normal yellow to red-orange. This novel red-orange coloration was due to the accumulation of two non-native κ-xanthophylls, capsanthin and capsorubin, as confirmed by HPLC and ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis with authentic standards. Cloning of the Llccs gene should advance our understanding of the molecular and genetic mechanisms of the biosynthesis of κ-carotenoids in general and in the genus Lilium in particular, and will facilitate transgenic alterations of the colors of flowers and fruits of many plant species.


Assuntos
Regulação Enzimológica da Expressão Gênica , Lilium/enzimologia , Lilium/genética , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Cor , DNA Complementar/genética , DNA Complementar/metabolismo , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Gênero Iris/genética , Gênero Iris/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Oxirredutases/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem/métodos , Xantofilas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA