RESUMO
Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.
RESUMO
Despite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licenced for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of non-human primates (NHPs). No trend was observed between resistance and antibody interactions. Resistance to infection was associated with high proportions of central memory T-cell CD69 and CD154 marker upregulation, increased IL-2 production, and a reduced IFN-γ response, offering insight into correlates of protection.
Assuntos
Infecções por HIV , Vacinas , Animais , Macaca mulatta , Vesiculovirus , Regulação para Cima , Antígenos Virais , Complicações Pós-Operatórias , Infecções por HIV/prevenção & controleRESUMO
Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of adult life-threatening sepsis and urinary tract infections (UTI). The emergence and spread of multidrug-resistant (MDR) ExPEC strains result in a considerable amount of treatment failure and hospitalization costs, and contribute to the spread of drug resistance amongst the human microbiome. Thus, an effective vaccine against ExPEC would reduce morbidity and mortality and possibly decrease carriage in healthy or diseased populations. A comparative genomic analysis demonstrated a gene encoding an invasin-like protein, termed sinH, annotated as an autotransporter protein, shows high prevalence in various invasive ExPEC phylogroups, especially those associated with systemic bacteremia and UTI. Here, we evaluated the protective efficacy and immunogenicity of a recombinant SinH-based vaccine consisting of either domain-3 or domains-1,2, and 3 of the putative extracellular region of surface-localized SinH. Immunization of a murine host with SinH-based antigens elicited significant protection against various strains of the pandemic ExPEC sequence type 131 (ST131) as well as multiple sequence types in two distinct models of infection (colonization and bacteremia). SinH immunization also provided significant protection against ExPEC colonization in the bladder in an acute UTI model. Immunized cohorts produced significantly higher levels of vaccine-specific serum IgG and urinary IgG and IgA, findings consistent with mucosal protection. Collectively, these results demonstrate that autotransporter antigens such as SinH may constitute promising ExPEC phylogroup-specific and sequence-type effective vaccine targets that reduce E. coli colonization and virulence.
Assuntos
Bacteriemia , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Infecções Urinárias , Animais , Humanos , Camundongos , Escherichia coli , Sistemas de Secreção Tipo V/genética , Infecções por Escherichia coli/prevenção & controle , Escherichia coli Extraintestinal Patogênica/genética , Vacinação , Fatores de Virulência/genética , Vacinas Sintéticas , Infecções Urinárias/prevenção & controle , Bacteriemia/prevenção & controle , Imunoglobulina G/farmacologiaRESUMO
The genus Bacillus includes species with diverse natural histories, including free-living nonpathogenic heterotrophs such as B. subtilis and host-dependent pathogens such as B. anthracis (the etiological agent of the disease anthrax) and B. cereus, a cause of food poisoning. Although highly similar genotypically, the ecological niches of these three species are mutually exclusive, which raises the untested hypothesis that their metabolism has speciated along a nutritional tract. Here, we developed a pipeline for quantitative total assessment of the use of diverse sources of carbon for general metabolism to better appreciate the "culinary preferences" of three distinct Bacillus species, as well as related Staphylococcus aureus. We show that each species has widely varying metabolic ability to utilize diverse sources of carbon that correlated to their ecological niches. This approach was applied to the growth and survival of B. anthracis in a blood-like environment and find metabolism shifts from sugar to amino acids as the preferred source of energy. Finally, various nutrients in broth and host-like environments are identified that may promote or interfere with bacterial metabolism during infection.
Assuntos
Bacillus/metabolismo , Carbono/metabolismo , Metaboloma , Bacillus/classificação , Metabolômica/métodosRESUMO
Anthrax disease is caused by infection with the bacteria Bacillus anthracis which, if left untreated, can result in fatal bacteremia and toxemia. Current treatment for infection requires prolonged administration of antibiotics. Despite this, inhalational and gastrointestinal anthrax still result in lethal disease. By identifying key metabolic steps that B. anthracis uses to grow in host-like environments, new targets for antibacterial strategies can be identified. Here, we report that the ilvD gene, which encodes dihydroxyacid dehydratase in the putative pathway for synthesizing branched chain amino acids, is necessary for B. anthracis to synthesize isoleucine de novo in an otherwise limiting microenvironment. We observed that ΔilvD B. anthracis cannot grow in media lacking isoleucine, but growth is restored when exogenous isoleucine is added. In addition, ΔilvD bacilli are unable to utilize human hemoglobin or serum albumin to overcome isoleucine auxotrophy, but can when provided with the murine forms. This species-specific effect is due to the lack of isoleucine in human hemoglobin. Furthermore, even when supplemented with physiological levels of human serum albumin, apotransferrin, fibrinogen, and IgG, the ilvD knockout strain grew poorly relative to nonsupplemented wild type. In addition, comparisons upon infecting humanized mice suggest that murine hemoglobin is a key source of isoleucine for both WT and ΔilvD bacilli. Further growth comparisons in murine and human blood show that the auxotrophy is detrimental for growth in human blood, not murine. This report identifies ilvD as necessary for isoleucine production in B. anthracis, and that it plays a key role in allowing the bacilli to effectively grow in isoleucine poor hosts. IMPORTANCE Anthrax disease, caused by B. anthracis, can cause lethal bacteremia and toxemia, even following treatment with antibiotics. This report identifies the ilvD gene, which encodes a dihydroxyacid dehydratase, as necessary for B. anthracis to synthesize the amino acid isoleucine in a nutrient-limiting environment, such as its mammalian host. The use of this strain further demonstrated a unique species-dependent utilization of hemoglobin as an exogenous source of extracellular isoleucine. By identifying mechanisms that B. anthracis uses to grow in host-like environments, new targets for therapeutic intervention are revealed.
Assuntos
Bacillus anthracis/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Hidroliases/metabolismo , Animais , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Meios de Cultura/química , Deleção de Genes , Hemoglobinas/química , Hemoglobinas/metabolismo , Humanos , Hidroliases/genética , Camundongos , MutaçãoRESUMO
There is an unmet need for pre-clinical models to understand the pathogenesis of human respiratory viruses; and predict responsiveness to immunotherapies. Airway organoids can serve as an ex-vivo human airway model to study respiratory viral pathogenesis; however, they rely on invasive techniques to obtain patient samples. Here, we report a non-invasive technique to generate human nose organoids (HNOs) as an alternate to biopsy derived organoids. We made air liquid interface (ALI) cultures from HNOs and assessed infection with two major human respiratory viruses, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Infected HNO-ALI cultures recapitulate aspects of RSV and SARS-CoV-2 infection, including viral shedding, ciliary damage, innate immune responses, and mucus hyper-secretion. Next, we evaluated the feasibility of the HNO-ALI respiratory virus model system to test the efficacy of palivizumab to prevent RSV infection. Palivizumab was administered in the basolateral compartment (circulation) while viral infection occurred in the apical ciliated cells (airways), simulating the events in infants. In our model, palivizumab effectively prevented RSV infection in a concentration dependent manner. Thus, the HNO-ALI model can serve as an alternate to lung organoids to study respiratory viruses and testing therapeutics.
RESUMO
There is an unmet need for preclinical models to understand the pathogenesis of human respiratory viruses and predict responsiveness to immunotherapies. Airway organoids can serve as an ex vivo human airway model to study respiratory viral pathogenesis; however, they rely on invasive techniques to obtain patient samples. Here, we report a noninvasive technique to generate human nose organoids (HNOs) as an alternative to biopsy-derived organoids. We made air-liquid interface (ALI) cultures from HNOs and assessed infection with two major human respiratory viruses, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected HNO-ALI cultures recapitulate aspects of RSV and SARS-CoV-2 infection, including viral shedding, ciliary damage, innate immune responses, and mucus hypersecretion. Next, we evaluated the feasibility of the HNO-ALI respiratory virus model system to test the efficacy of palivizumab to prevent RSV infection. Palivizumab was administered in the basolateral compartment (circulation), while viral infection occurred in the apical ciliated cells (airways), simulating the events in infants. In our model, palivizumab effectively prevented RSV infection in a concentration-dependent manner. Thus, the HNO-ALI model can serve as an alternative to lung organoids to study respiratory viruses and test therapeutics. IMPORTANCE Preclinical models that recapitulate aspects of human airway disease are essential for the advancement of novel therapeutics and vaccines. Here, we report a versatile airway organoid model, the human nose organoid (HNO), that recapitulates the complex interactions between the host and virus. HNOs are obtained using noninvasive procedures and show divergent responses to SARS-CoV-2 and RSV infection. SARS-CoV-2 induces severe damage to cilia and the epithelium, no interferon-λ response, and minimal mucus secretion. In striking contrast, RSV induces hypersecretion of mucus and a profound interferon-λ response with ciliary damage. We also demonstrated the usefulness of our ex vivo HNO model of RSV infection to test the efficacy of palivizumab, an FDA-approved monoclonal antibody to prevent severe RSV disease in high-risk infants. Our study reports a breakthrough in both the development of a novel nose organoid model and in our understanding of the host cellular response to RSV and SARS-CoV-2 infection.
Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Humanos , SARS-CoV-2 , Palivizumab , Pulmão/patologia , Organoides/patologiaRESUMO
Bacillus anthracis is the causative agent of anthrax disease, presents with high mortality, and has been at the center of bioweapon efforts. The only currently U.S. FDA-approved vaccine to prevent anthrax in humans is anthrax vaccine adsorbed (AVA), which is protective in several animal models and induces neutralizing antibodies against protective antigen (PA), the cell-binding component of anthrax toxin. However, AVA requires a five-course regimen to induce immunity, along with an annual booster, and is composed of undefined culture supernatants from a PA-secreting strain. In addition, it appears to be ineffective against strains that lack anthrax toxin. Here, we investigated a vaccine formulation consisting of recombinant proteins from a surface-localized heme transport system containing near-iron transporter (NEAT) domains and its efficacy as a vaccine for anthrax disease. The cocktail of five NEAT domains was protective against a lethal challenge of inhaled bacillus spores at 3 and 28 weeks after vaccination. The reduction of the formulation to three NEATs (IsdX1, IsdX2, and Bslk) was as effective as a five-NEAT domain cocktail. The adjuvant alum, approved for use in humans, was as protective as Freund's Adjuvant, and protective vaccination correlated with increased anti-NEAT antibody reactivity and reduced bacterial levels in organs. Finally, the passive transfer of anti-NEAT antisera reduced mortality and disease severity, suggesting the protective component is comprised of antibodies. Collectively, these results provide evidence that a vaccine based upon recombinant NEAT proteins should be considered in the development of a next-generation anthrax vaccine.