Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Xenotransplantation ; 28(2): e12664, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33241624

RESUMO

BACKGROUND: Many genetically multi-modified donor lines for xenotransplantation have a background of domestic pigs with rapid body and organ growth. The intrinsic growth potential of porcine xeno-organs may impair their long-term function after orthotopic transplantation in non-human primate models. Since growth hormone is a major stimulator of postnatal growth, we deleted its receptor (GHR-KO) to reduce the size of donor pigs in one step. METHODS: Heart weight and proteome profile of myocardium were investigated in GHR-KO and control pigs. GHR-KO mutations were introduced using CRISPR/Cas9 in an α1,3-galactosyltransferase (GGTA1)-deficient background expressing the human cluster of differentiation (hCD46) and human thrombomodulin (hTHBD) to generate quadruple-modified (4GM) pigs. RESULTS: At age 6 months, GHR-KO pigs had a 61% reduced body weight and a 63% reduced heart weight compared with controls. The mean minimal diameter of cardiomyocytes was 28% reduced. A holistic proteome study of myocardium samples from the two groups did not reveal prominent differences. Two 4GM founder sows had low serum insulin-like growth factor 1 (IGF1) levels (24 ± 1 ng/mL) and reached body weights of 70.3 and 73.4 kg at 9 months. Control pigs with IGF1 levels of 228 ± 24 ng/mL reached this weight range three months earlier. The 4GM sows showed normal sexual development and were mated with genetically multi-modified boars. Offspring revealed the expected Mendelian transmission of the genetic modifications and consistent expression of the transgenes. CONCLUSION: GHR-KO donor pigs can be used at an age beyond the steepest phase of their growth curve, potentially reducing the problem of xeno-organ overgrowth in preclinical studies.


Assuntos
Galactosiltransferases , Receptores da Somatotropina , Animais , Animais Geneticamente Modificados , Feminino , Técnicas de Inativação de Genes , Xenoenxertos , Masculino , Primatas , Receptores da Somatotropina/genética , Sus scrofa , Suínos , Transplante Heterólogo
2.
Xenotransplantation ; 27(5): e12585, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32056300

RESUMO

The activation of the endothelial surface in xenografts is still a poorly understood process and the consequences are unpredictable. The role of Ca2+ -messaging during the activation of endothelial cells is well recognized and routinely measured by synthetic Ca2+ -sensitive fluorophors. However, these compounds require fresh loading immediately before each experiment and in particular when grown in state-of-the-art 3D cell culture systems, endothelial cells are difficult to access with such sensors. Therefore, we developed transgenic pigs expressing a Ca2+ -sensitive protein and examined its principal characteristics. Primary transgenic endothelial cells stimulated by ATP showed a definite and short influx of Ca2+ into the cytosol, whereas exposure to human serum resulted in a more intense and sustained response. Surprisingly, not all endothelial cells reacted identically to a stimulus, rather activation took place in adjacent cells in a timely decelerated way and with distinct intensities. This effect was again more pronounced when cells were stimulated with human serum. Finally, we show clear evidence that antibody binding alone significantly activated endothelial cells, whereas antibody depletion dramatically reduced the stimulatory potential of serum. Transgenic porcine endothelial cells expressing a Ca2+ -sensor represent an interesting tool to dissect factors inducing activation of porcine endothelial cells after exposure to human blood or serum.


Assuntos
Sinalização do Cálcio , Células Endoteliais , Soro , Animais , Animais Geneticamente Modificados , Cálcio , Células Cultivadas , Células Endoteliais/citologia , Humanos , Suínos , Transplante Heterólogo
3.
Methods Mol Biol ; 1961: 271-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30912052

RESUMO

Gene Editing by CRISPR/Cas has revolutionized many aspects of biotechnology within a short period of time. This is also true for the genetic manipulation of livestock species, but their specific challenges such as the lack of stem cells, the limited proliferative capacity of primary cells, and the genetic diversity of the pig and cattle populations need consideration when CRISPR/Cas is applied. Here we present guidelines for CRISPRing primary cells in pig and cattle, with a specific focus on testing gRNA in vitro, on generating single cell clones, and on identifying modifications in single cell clones.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Animais , Bovinos , Células Cultivadas , Gado/genética , RNA Guia de Cinetoplastídeos/genética , Suínos
4.
Reprod Fertil Dev ; 31(4): 820-826, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30384878

RESUMO

Immunosurgical isolation of the inner cell mass (ICM) from blastocysts is based on complement-mediated lysis of antibody-coated trophectoderm (TE) cells. Conventionally, anti-species antisera, containing antibodies against multiple undefined TE-cell epitopes, have been used as the antibody source. We previously generated α-1,3-galactosyltransferase deficient (GTKO) pigs to prevent hyperacute rejection of pig-to-primate xenotransplants. Since GTKO pigs lack galactosyl-α-1,3-galactose (αGal) but are exposed to this antigen (e.g. αGal on gut bacteria), they produce anti-αGal antibodies. In this study, we examined whether serum from GTKO pigs could be used as a novel antibody source for multi-species embryo immunosurgery. Mouse, rabbit, pig and cattle blastocysts were used for the experiment. Expression of αGal epitopes on the surface of TE cells was detected in blastocysts of all species tested. GTKO pig serum contained sufficient anti-αGal antibodies to induce complement-mediated lysis of TE cells in blastocysts from all species investigated. Intact ICMs could be successfully recovered and the majority showed the desired level of purity. Our study demonstrates that GTKO pig serum is a reliable and effective source of antibodies targeting the αGal epitopes of TE cells for multi-species embryo immunosurgery.


Assuntos
Blastocisto/imunologia , Epitopos , Galactose/imunologia , Animais , Bovinos , Camundongos , Coelhos , Suínos
5.
J Biol Chem ; 292(48): 19935-19951, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972138

RESUMO

Lectins play important roles in infections by pathogenic bacteria, for example, in host colonization, persistence, and biofilm formation. The Gram-negative entomopathogenic bacterium Photorhabdus luminescens symbiotically lives in insect-infecting Heterorhabditis nematodes and kills the insect host upon invasion by the nematode. The P. luminescens genome harbors the gene plu2096, coding for a novel lectin that we named PllA. We analyzed the binding properties of purified PllA with a glycan array and a binding assay in solution. Both assays revealed a strict specificity of PllA for α-galactoside-terminating glycoconjugates. The crystal structures of apo PllA and complexes with three different ligands revealed the molecular basis for the strict specificity of this lectin. Furthermore, we found that a 90° twist in subunit orientation leads to a peculiar quaternary structure compared with that of its ortholog LecA from Pseudomonas aeruginosa We also investigated the utility of PllA as a probe for detecting α-galactosides. The α-Gal epitope is present on wild-type pig cells and is the main reason for hyperacute organ rejection in pig to primate xenotransplantation. We noted that PllA specifically recognizes this epitope on the glycan array and demonstrated that PllA can be used as a fluorescent probe to detect this epitope on primary porcine cells in vitro In summary, our biochemical and structural analyses of the P. luminescens lectin PllA have disclosed the structural basis for PllA's high specificity for α-galactoside-containing ligands, and we show that PllA can be used to visualize the α-Gal epitope on porcine tissues.


Assuntos
Galactosídeos/metabolismo , Glicoconjugados/metabolismo , Lectinas/metabolismo , Photorhabdus/metabolismo , Sequência de Aminoácidos , Animais , Testes de Hemaglutinação , Lectinas/química , Lectinas/isolamento & purificação , Sondas Moleculares , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Suínos
6.
Transgenic Res ; 26(2): 309-318, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27943082

RESUMO

Due to a rising demand of porcine models with complex genetic modifications for biomedical research, the approaches for their generation need to be adapted. In this study we describe the direct introduction of a gene construct into the pronucleus (PN)-like structure of cloned embryos as a novel strategy for the generation of genetically modified pigs, termed "nuclear injection". To evaluate the reliability of this new strategy, the developmental ability of embryos in vitro and in vivo as well as the integration and expression efficiency of a transgene carrying green fluorescence protein (GFP) were examined. Eighty percent of the cloned pig embryos (633/787) exhibited a PN-like structure, which met the prerequisite to technically perform the new method. GFP fluorescence was observed in about half of the total blastocysts (21/40, 52.5%), which was comparable to classical zygote PN injection (28/41, 68.3%). In total, 478 cloned embryos injected with the GFP construct were transferred into 4 recipients and from one recipient 4 fetuses (day 68) were collected. In one of the fetuses which showed normal development, the integration of the transgene was confirmed by PCR in different tissues and organs from all three primary germ layers and placenta. The integration pattern of the transgene was mosaic (48 out of 84 single-cell colonies established from a kidney were positive for GFP DNA by PCR). Direct GFP fluorescence was observed macro- and microscopically in the fetus. Our novel strategy could be useful particularly for the generation of pigs with complex genetic modifications.


Assuntos
Animais Geneticamente Modificados/genética , Núcleo Celular/genética , Transgenes/genética , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Clonagem de Organismos/métodos , DNA/genética , Transferência Embrionária/métodos , Proteínas de Fluorescência Verde/genética , Técnicas de Transferência Nuclear , Suínos , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA