Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Contemp Oncol (Pozn) ; 28(1): 37-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800533

RESUMO

Introduction: This study introduces a novel methodology for classifying human papillomavirus (HPV) using colposcopy images, focusing on its potential in diagnosing cervical cancer, the second most prevalent malignancy among women globally. Addressing a crucial gap in the literature, this study highlights the unexplored territory of HPV-based colposcopy image diagnosis for cervical cancer. Emphasising the suitability of colposcopy screening in underdeveloped and low-income regions owing to its small, cost-effective setup that eliminates the need for biopsy specimens, the methodological framework includes robust dataset augmentation and feature extraction using EfficientNetB0 architecture. Material and methods: The optimal convolutional neural network model was selected through experimentation with 19 architectures, and fine-tuning with the fine κ-nearest neighbour algorithm enhanced the classification precision, enabling detailed distinctions with a single neighbour. Results: The proposed methodology achieved outstanding results, with a validation accuracy of 99.9% and an area under the curve (AUC) of 99.86%, with robust performance on test data, 91.4% accuracy, and an AUC of 91.76%. These remarkable findings underscore the effectiveness of the integrated approach, which offers a highly accurate and reliable system for HPV classification.Conclusions: This research sets the stage for advancements in medical imaging applications, prompting future refinement and validation in diverse clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA