Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(4): 1488-1494, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36939183

RESUMO

Beta-cyclodextrin (ß-CD) stabilized cerium oxide nanoparticles (ß-CD@CeO2 NPs) were synthesized through a hydrothermal route. The electronic properties, surface functional group, surface composition, size, and morphologies of the as-synthesized ß-CD@CeO2 NPs were characterized using UV-visible spectroscopy, FTIR analysis, high resolution X-ray photoelectron spectroscopy (HRXPS), high resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM). The pH-dependent variation of the ζ-potential of ß-CD@CeO2 NPs and the catalytic activity of the NPs for the hydrolysis of paraoxon were investigated. The observed pseudo-first-order rate constant (kobs) for the hydrolysis of paraoxon is increased with increasing pH and the ζ-potential of ß-CD@CeO2 NPs. The kinetics and mechanism of hydrolysis of paraoxon in the aqueous and cationic micellar media have been discussed.


Assuntos
Cério , beta-Ciclodextrinas , Paraoxon/química , Hidrólise , Cério/química , beta-Ciclodextrinas/química
2.
Bioresour Technol ; 324: 124594, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33453518

RESUMO

Catalytic pyrolysis of ulva lactuca (UL) macroalgae was studied over a series of ZrO2 supported metal such as Co, Ni and Co-Ni metal catalysts at temperature range of 300-500 °C. Highest bio-oil yield (47.8 wt%) was found with Co-Ni/ZrO2 (10 wt%) catalyst while non-catalytic yielded 42.5 wt% bio-oil. Moreover with increases the metal amount to 15 wt%, the bio-oil yield slightly increased (49.2 wt%). The bio-oil quality significantly improved with using the catalysts compared to the non-catalytic pyrolysis. Catalytic pyrolysis also revealed that introducing Co-Ni into the ZrO2 could result in higher surface area and which increased active sites. Catalytic bio-oils were consisted of mainly long chain hydrocarbon in the range of C6-C16. Moreover, the catalytic bio-oils were showed the higher 'high heating value' (HHV) 38.1 MJ/kg as compare to non-catalytic bio-oils (29.4 MJ/kg). Catalysts have been showed excellent recyclability on bio-oil yield and compounds selectivity.


Assuntos
Alga Marinha , Ulva , Biocombustíveis , Catálise , Temperatura Alta , Óleos de Plantas , Polifenóis , Pirólise
3.
RSC Adv ; 9(72): 42085-42095, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35542852

RESUMO

A large number of cardiovascular diseases have recently become of serious concern throughout the world. Herein, we developed a colorimetric probe based on functionalized silver nanoparticles (AgNPs) for the efficient sensing of cholesterol, an important cardiovascular risk marker. A simple sodium borohydride reduction method was employed to synthesize the AgNPs. The cholesterol oxidase (ChOx)-immobilized AgNPs interact with free cholesterol to produce H2O2 in proportion to the concentration of cholesterol, resulting in decreased AgNP absorbance (turn-off) at 400 nm due to electron transfer between the AgNPs and H2O2. The response of the sensor can also be observed visually. The absorption intensity of the AgNPs is recovered (turn-on) upon the addition of sodium dodecyl sulfate due to the inhibition of ChOx. This on-off mechanism was effectively applied to detect cholesterol within the concentration range 10-250 nM with a low detection limit of approximately 0.014 nM. Moreover, the selectivity of the sensor toward cholesterol was analyzed in the presence of a range of interfering organic substances such as glucose, urea, and sucrose. Finally, the potential of the proposed sensor was evaluated using real samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA