Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 119(1): 23-41, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042449

RESUMO

PURPOSE: Pathophysiological hallmarks of Alzheimer's disease (AD) include extracellular amyloid plaques and intracellular neurofibrillary tangles. Recent studies also demonstrated a role of neuroinflammation in the progression of the disease. Clinical trials and animal studies using low-dose radiation therapy (LDRT) have shown therapeutic potential for AD. This systematic review summarizes the current evidence on the use of LDRT for the treatment of AD, outlines potential mechanisms of action, and discusses current challenges in the planning of future trials. METHODS AND MATERIALS: A systematic review of human and animal studies as well as registered clinical trials describing outcomes for RT in the treatment of AD was conducted. We followed the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles published until July 1, 2023, were included. RESULTS: The initial search yielded 993 articles. After the removal of duplicates and ineligible publications, a total of 16 (12 animal, 4 human) studies were included. Various dose regimens were utilized in both animal and human trials. The results revealed that LDRT reduced the number of amyloid plaques and neurofibrillary tangles, and it has a role in the regulation of genes and protein expression involved in the pathological progression of AD. LDRT has demonstrated reduced astro- and microgliosis, anti-inflammatory and neuroprotective effects, and an alleviation of symptoms of cognitive deficits in animal models. Most studies in humans suggested improvements in cognition and behavior. None of the trials or studies described significant (>grade 2) toxicity. CONCLUSIONS: Preclinical studies, animal studies, and early clinical trials in humans have shown a promising role for LDRT in the treatment of AD pathologies, although the underlying mechanisms are yet to be fully explored. Phase I/II/III trials are needed to assess the long-term safety, efficacy, and optimal treatment parameters of LDRT in AD treatment.


Assuntos
Doença de Alzheimer , Animais , Humanos , Placa Amiloide/tratamento farmacológico , Cognição , Anti-Inflamatórios/farmacologia , Modelos Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Peptídeos beta-Amiloides/uso terapêutico , Modelos Animais de Doenças
2.
J Neuroinflammation ; 19(1): 172, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780157

RESUMO

BACKGROUND: Deposition of amyloid beta (Aß) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer's disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aß pathology and glial cell-mediated neuroinflammation. RESULTS: Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aß and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aß and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. CONCLUSIONS: Our data highlight that the autophagy activator spermidine holds the potential to enhance Aß degradation and to counteract glia-mediated neuroinflammation in AD pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Espermidina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Espermidina/farmacologia , Espermidina/uso terapêutico
3.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277379

RESUMO

Hereditary Parkinson's disease (PD) can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) as stressor or the autosomal recessive deficiency of PINK1 Serine/Threonine-phosphorylation activity as stress-response. We demonstrated the combination of PINK1-knockout with overexpression of SNCAA53T in double mutant (DM) mice to exacerbate locomotor deficits and to reduce lifespan. To survey posttranslational modifications of proteins underlying the pathology, brain hemispheres of old DM mice underwent quantitative label-free global proteomic mass spectrometry, focused on Ser/Thr-phosphorylations. As an exceptionally strong effect, we detected >300-fold reductions of phosphoThr1928 in MAP1B, a microtubule-associated protein, and a similar reduction of phosphoSer3781 in ANK2, an interactor of microtubules. MAP1B depletion is known to trigger perturbations of microtubular mitochondria trafficking, neurite extension, and synaptic function, so it was noteworthy that relevantly decreased phosphorylation was also detected for other microtubule and microfilament factors, namely MAP2S1801, MARK1S394, MAP1AT1794, KIF1AS1537, 4.1NS541, 4.1GS86, and ADD2S528. While the MAP1B heavy chain supports regeneration and growth cones, its light chain assists DAPK1-mediated autophagy. Interestingly, relevant phosphorylation decreases of DAPK2S299, VPS13DS2429, and VPS13CS2480 in the DM brain affected regulators of autophagy, which are implicated in PD. Overall, significant downregulations were enriched for PFAM C2 domains, other kinases, and synaptic transmission factors upon automated bioinformatics, while upregulations were not enriched for selective motifs or pathways. Validation experiments confirmed the change of LC3 processing as reflection of excessive autophagy in DM brain, and dependence of ANK2/MAP1B expression on PINK1 levels. Our new data provide independent confirmation in a mouse model with combined PARK1/PARK4/PARK6 pathology that MAP1B/ANK2 phosphorylation events are implicated in Parkinsonian neurodegeneration. These findings expand on previous observations in Drosophila melanogaster that the MAP1B ortholog futsch in the presynapse is a primary target of the PARK8 protein LRRK2, and on a report that MAP1B is a component of the pathological Lewy body aggregates in PD patient brains. Similarly, ANK2 gene locus variants are associated with the risk of PD, ANK2 interacts with PINK1/Parkin-target proteins such as MIRO1 or ATP1A2, and ANK2-derived peptides are potent inhibitors of autophagy.


Assuntos
Anquirinas/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Sinapses/metabolismo , alfa-Sinucleína/metabolismo , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Camundongos Knockout , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Domínios Proteicos
4.
Pflugers Arch ; 471(8): 1065-1078, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31222491

RESUMO

Senescent cells, which are cells in a post-proliferative state, show an increased number of dysfunctional mitochondria and oxidatively damaged and aggregated proteins. The mitochondrial-lysosomal axis theory of aging proposes that the autophago-lysosomal system is unable to cope with the rising amount of damaged organelles and proteins. We used human umbilical vein endothelial cells (HUVEC) as in vitro model system to determine which part/s of the autophago-lysosomal pathway become deficient by aging. Senescent HUVEC contained a much larger population of autophagosomes and lysosomes compared to young cells. Transcriptome analysis comparing young and old cells demonstrated several age-related changes of autophagy gene expression. One reason for the observed increase of autophagosomes was an impairment of the autophagic flux in senescent cells due to reduced V-ATPase activity required for acidification of the lysosomes and thus functionality of lysosomal hydrolases. The hypothesis that reduced mitochondrial ATP production underlies low V-ATPase activity was supported by addition of exogenous ATP. This procedure rescued the lysosomal acidification and restored the autophagic flux. Thus, we propose impaired lysosomal acidification due to ATP shortage which may result from mitochondrial dysfunction as a mechanism underlying the accumulation of dysfunctional cellular constituents during aging.


Assuntos
Autofagia , Senescência Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lisossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Mitocôndrias/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
5.
EMBO J ; 38(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30617086

RESUMO

Alzheimer's disease is characterized not only by extracellular amyloid plaques and neurofibrillary tangles, but also by microglia-mediated neuroinflammation. Recently, autophagy has been linked to the regulation of the inflammatory response. Thus, we investigated how an impairment of autophagy mediated by BECN1/Beclin1 reduction, as described in Alzheimer's disease patients, would influence cytokine production of microglia. Acutely stimulated microglia from Becn1+/- mice exhibited increased expression of IL-1beta and IL-18 compared to wild-type microglia. Becn1+/-APPPS1 mice also contained enhanced IL-1beta levels. The investigation of the IL-1beta/IL-18 processing pathway showed an elevated number of cells with inflammasomes and increased levels of NLRP3 and cleaved CASP1/Caspase1 in Becn1+/- microglia. Super-resolation microscopy revealed a very close association of NLRP3 aggregates and LC3-positive vesicles. Interestingly, CALCOCO2 colocalized with NLRP3 and its downregulation increased IL-1beta release. These data support the notion that selective autophagy can impact microglia activation by modulating IL-1beta and IL-18 production via NLRP3 degradation and thus present a mechanism how impaired autophagy could contribute to neuroinflammation in Alzheimer's disease.


Assuntos
Autofagia , Proteína Beclina-1/fisiologia , Inflamação/imunologia , Microglia/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Placa Amiloide/imunologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Autofagossomos , Citocinas/metabolismo , Feminino , Inflamassomos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/fisiologia
6.
J Clin Invest ; 128(7): 2774-2786, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29634489

RESUMO

Activation of non-neuronal microglia is thought to play a causal role in spinal processing of neuropathic pain. To specifically investigate microglia-mediated effects in a model of neuropathic pain and overcome the methodological limitations of previous approaches exploring microglia function upon nerve injury, we selectively ablated resident microglia by intracerebroventricular ganciclovir infusion into male CD11b-HSVTK-transgenic mice, which was followed by a rapid, complete, and persistent (23 weeks) repopulation of the CNS by peripheral myeloid cells. In repopulated mice that underwent sciatic nerve injury, we observed a normal response to mechanical stimuli, but an absence of thermal hypersensitivity ipsilateral to the injured nerve. Furthermore, we found that neuronal expression of calcitonin gene-related peptide (CGRP), which is a marker of neurons essential for heat responses, was diminished in the dorsal horn of the spinal cord in repopulated mice. These findings identify distinct mechanisms for heat and mechanical hypersensitivity and highlight a crucial contribution of CNS myeloid cells in the facilitation of noxious heat.


Assuntos
Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Células Mieloides/patologia , Células Mieloides/fisiologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/citologia , Microglia/fisiologia , Neuralgia/patologia , Neuralgia/fisiopatologia , Fragmentos de Peptídeos/fisiologia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervos Periféricos/patologia , Nervos Periféricos/fisiopatologia , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiopatologia
7.
Dis Model Mech ; 10(5): 619-631, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108469

RESUMO

Parkinson's disease (PD) is a frequent neurodegenerative process in old age. Accumulation and aggregation of the lipid-binding SNARE complex component α-synuclein (SNCA) underlies this vulnerability and defines stages of disease progression. Determinants of SNCA levels and mechanisms of SNCA neurotoxicity have been intensely investigated. In view of the physiological roles of SNCA in blood to modulate vesicle release, we studied blood samples from a new large pedigree with SNCA gene duplication (PARK4 mutation) to identify effects of SNCA gain of function as potential disease biomarkers. Downregulation of complexin 1 (CPLX1) mRNA was correlated with genotype, but the expression of other Parkinson's disease genes was not. In global RNA-seq profiling of blood from presymptomatic PARK4 indviduals, bioinformatics detected significant upregulations for platelet activation, hemostasis, lipoproteins, endocytosis, lysosome, cytokine, Toll-like receptor signaling and extracellular pathways. In PARK4 platelets, stimulus-triggered degranulation was impaired. Strong SPP1, GZMH and PLTP mRNA upregulations were validated in PARK4. When analysing individuals with rapid eye movement sleep behavior disorder, the most specific known prodromal stage of general PD, only blood CPLX1 levels were altered. Validation experiments confirmed an inverse mutual regulation of SNCA and CPLX1 mRNA levels. In the 3'-UTR of the CPLX1 gene we identified a single nucleotide polymorphism that is significantly associated with PD risk. In summary, our data define CPLX1 as a PD risk factor and provide functional insights into the role and regulation of blood SNCA levels. The new blood biomarkers of PARK4 in this Turkish family might become useful for PD prediction.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Biomarcadores/sangue , Predisposição Genética para Doença , Doença por Corpos de Lewy/sangue , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Transtorno do Comportamento do Sono REM/sangue , RNA/sangue , alfa-Sinucleína/deficiência , Feminino , Heterozigoto , Humanos , Doença por Corpos de Lewy/genética , Pessoa de Meia-Idade , Doença de Parkinson/sangue , Transtorno do Comportamento do Sono REM/fisiopatologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , alfa-Sinucleína/sangue , alfa-Sinucleína/genética
8.
PLoS One ; 10(3): e0121089, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790475

RESUMO

The involvement of the ubiquitin-proteasome system (UPS) in the course of various age-associated neurodegenerative diseases is well established. The single RING finger type E3 ubiquitin-protein ligase PARK2 is mutated in a Parkinson's disease (PD) variant and was found to interact with ATXN2, a protein where polyglutamine expansions cause Spinocerebellar ataxia type 2 (SCA2) or increase the risk for Levodopa-responsive PD and for the motor neuron disease Amyotrophic lateral sclerosis (ALS). We previously reported evidence for a transcriptional induction of the multi-subunit RING finger Skp1/Cul/F-box (SCF) type E3 ubiquitin-protein ligase complex component FBXW8 in global microarray profiling of ATXN2-expansion mouse cerebellum and demonstrated its role for ATXN2 degradation in vitro. Now, we documented co-localization in vitro and co-immunoprecipitations both in vitro and in vivo, which indicate associations of FBXW8 with ATXN2 and PARK2. Both FBXW8 and PARK2 proteins are driven into insolubility by expanded ATXN2. Whereas the FBXW8 transcript upregulation by ATXN2- expansion was confirmed also in qPCR of skin fibroblasts and blood samples of SCA2 patients, a FBXW8 expression dysregulation was not observed in ATXN2-deficient mice, nor was a PARK2 transcript dysregulation observed in any samples. Jointly, all available data suggest that the degradation of wildtype and mutant ATXN2 is dependent on FBXW8, and that ATXN2 accumulation selectively modulates FBXW8 levels, while PARK2 might act indirectly through FBXW8. The effects of ATXN2-expansions on FBXW8 expression in peripheral tissues like blood may become useful for clinical diagnostics.


Assuntos
Ataxina-2/metabolismo , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica , Peptídeos/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Idoso , Animais , Ataxina-2/genética , Cerebelo/metabolismo , Proteínas F-Box/sangue , Proteínas F-Box/genética , Feminino , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Células HeLa , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transporte Proteico , Proteólise , Solubilidade , Ataxias Espinocerebelares/sangue , Ataxias Espinocerebelares/patologia , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Adulto Jovem
9.
Eur J Cell Biol ; 94(3-4): 148-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25681212

RESUMO

The family of lysosome-associated membrane proteins (LAMP) includes the ubiquitously expressed LAMP1 and LAMP2, which account for half of the proteins in the lysosomal membrane. Another member of the LAMP family is LAMP3, which is expressed only in certain cell types and differentiation stages. LAMP3 expression is linked with poor prognosis of certain cancers, and the locus where it is encoded was identified as a risk factor for Parkinson's disease (PD). Here, we investigated the role of LAMP3 in the two main cellular degradation pathways, the proteasome and autophagy. LAMP3 mRNA was not detected in mouse models of PD or in the brain of human patients. However, it was strongly induced upon proteasomal inhibition in the neuroblastoma cell line SH-SY5Y. Induction of LAMP3 mRNA following proteasomal inhibition was dependent on UPR transcription factor ATF4 signaling and induced autophagic flux. Prevention of LAMP3 induction enhanced apoptotic cell death. In summary, these data demonstrate that LAMP3 regulation as part of the UPR contributes to protein degradation and cell survival during proteasomal dysfunction. This link between autophagy and the proteasome may be of special importance for the treatment of tumor cells with proteasomal inhibitors.


Assuntos
Autofagia , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Humanos , Redes e Vias Metabólicas , Camundongos , Doença de Parkinson/metabolismo
10.
Prog Mol Biol Transl Sci ; 127: 155-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25149217

RESUMO

Parkinson's disease (PD) is frequent at old age, leading to atrophy of specific neurons and to early death. Lifespan and healthy aging of organisms depend on growth factor/nutrient signaling and on bioenergetics via mitochondria, all of which regulate downstream nuclear functions through FOXO and SIR proteins. Mammalian SIRtuins include the mitochondrial deacetylase SIRT3, and recently mitochondrial lysine acetylation (AcLys) was found to initiate mitochondrial degradation by autophagy. This mitophagy process is closely regulated by PINK1 and Parkin, two interacting proteins which relocalize to mitochondria with deficient proton gradients, and whose mutations cause autosomal recessive variants of PD. Strong generalized deacetylation of mitochondrial proteins and altered SIRT3 levels occur in rodent models of PD before the onset of toxic aggregate formation. We propose that the development of site-specific AcLys-antibodies and their characterization in patients will have medical value.


Assuntos
Mitocôndrias/metabolismo , Modelos Genéticos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Acetilação , Animais , Metabolismo Energético , Humanos , Mitofagia
11.
PLoS One ; 9(4): e95288, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24751806

RESUMO

The mitochondrial kinase PINK1 and the ubiquitin ligase Parkin are participating in quality control after CCCP- or ROS-induced mitochondrial damage, and their dysfunction is associated with the development and progression of Parkinson's disease. Furthermore, PINK1 expression is also induced by starvation indicating an additional role for PINK1 in stress response. Therefore, the effects of PINK1 deficiency on the autophago-lysosomal pathway during stress were investigated. Under trophic deprivation SH-SY5Y cells with stable PINK1 knockdown showed downregulation of key autophagic genes, including Beclin, LC3 and LAMP-2. In good agreement, protein levels of LC3-II and LAMP-2 but not of LAMP-1 were reduced in different cell model systems with PINK1 knockdown or knockout after addition of different stressors. This downregulation of autophagic factors caused increased apoptosis, which could be rescued by overexpression of LC3 or PINK1. Taken together, the PINK1-mediated reduction of autophagic key factors during stress resulted in increased cell death, thus defining an additional pathway that could contribute to the progression of Parkinson's disease in patients with PINK1 mutations.


Assuntos
Autofagia , Proteínas Quinases/deficiência , Estresse Fisiológico , Apoptose/genética , Autofagia/genética , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Quinases/metabolismo , Estresse Fisiológico/genética
12.
Hum Mol Genet ; 22(24): 4871-87, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23851121

RESUMO

The caseinolytic peptidase P (CLPP) is conserved from bacteria to humans. In the mitochondrial matrix, it multimerizes and forms a macromolecular proteasome-like cylinder together with the chaperone CLPX. In spite of a known relevance for the mitochondrial unfolded protein response, its substrates and tissue-specific roles are unclear in mammals. Recessive CLPP mutations were recently observed in the human Perrault variant of ovarian failure and sensorineural hearing loss. Here, a first characterization of CLPP null mice demonstrated complete female and male infertility and auditory deficits. Disrupted spermatogenesis already at the spermatid stage and ovarian follicular differentiation failure were evident. Reduced pre-/post-natal survival and marked ubiquitous growth retardation contrasted with only light impairment of movement and respiratory activities. Interestingly, the mice showed resistance to ulcerative dermatitis. Systematic expression studies detected up-regulation of other mitochondrial chaperones, accumulation of CLPX and mtDNA as well as inflammatory factors throughout tissues. T-lymphocytes in the spleen were activated. Thus, murine Clpp deletion represents a faithful Perrault model. The disease mechanism probably involves deficient clearance of mitochondrial components and inflammatory tissue destruction.


Assuntos
DNA Mitocondrial/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Transtornos do Crescimento/genética , Perda Auditiva/genética , Infertilidade/genética , Mediadores da Inflamação/metabolismo , Animais , Respiração Celular/genética , Modelos Animais de Doenças , Feminino , Ordem dos Genes , Gônadas/metabolismo , Gônadas/patologia , Transtornos do Crescimento/metabolismo , Perda Auditiva/metabolismo , Infertilidade/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Atividade Motora/genética , Mutação , Fenótipo , Baço/citologia , Baço/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
13.
Mol Neurobiol ; 46(1): 205-16, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22847631

RESUMO

Tauopathies like the "frontotemporal dementia with Parkinsonism linked to chromosome 17" (FTDP-17) are characterized by an aberrant accumulation of intracellular neurofibrillary tangles composed of hyperphosphorylated tau. For FTDP-17, a pathogenic tau mutation P301L was identified. Impaired mitochondrial function including disturbed dynamics such as fission and fusion are most likely major pathomechanisms of most neurodegenerative diseases. However, very little is known if tau itself affects mitochondrial function and dynamics. We addressed this question using SY5Y cells stably overexpressing wild-type (wt) and P301L mutant tau. P301L overexpression resulted in a substantial complex I deficit accompanied by decreased ATP levels and increased susceptibility to oxidative stress. This was paralleled by pronounced changes in mitochondrial morphology, decreased fusion and fission rates accompanied by reduced expression of several fission and fusion factors like OPA-1 or DRP-1. In contrast, overexpression of wt tau exhibits protective effects on mitochondrial function and dynamics including enhanced complex I activity. Our findings clearly link tau bidirectional to mitochondrial function and dynamics, identifying a novel aspect of the physiological role of tau and the pathomechanism of tauopathies.


Assuntos
Mitocôndrias/patologia , Tauopatias/patologia , Linhagem Celular Tumoral , Transporte de Elétrons , Humanos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Proteínas Mutantes/metabolismo , Mutação/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Tauopatias/metabolismo , Proteínas tau/metabolismo
14.
Mol Neurobiol ; 46(1): 20-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22350618

RESUMO

Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues.


Assuntos
Fibroblastos/patologia , Modelos Biológicos , Doença de Parkinson/patologia , Pele/patologia , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Transplante de Pele
15.
Antioxid Redox Signal ; 16(12): 1421-33, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22229260

RESUMO

AIMS: Intracellular amyloid beta (Aß) oligomers and extracellular Aß plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aß production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aß generation and thereby initiate a vicious cycle further impairing mitochondrial function. RESULTS: Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aß. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aß, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aß showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aß was partly reduced by an antioxidant, indicating that Aß formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aß levels in vivo. INNOVATION: We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aß production in vitro and in vivo. CONCLUSION: Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aß itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Mutantes , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Rotenona/farmacologia
16.
Autophagy ; 8(1): 47-62, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22170153

RESUMO

Mitochondrial health is maintained by the quality control mechanisms of mitochondrial dynamics (fission and fusion) and mitophagy. Decline of these processes is thought to contribute to aging and neurodegenerative diseases. To investigate the role of mitochondrial quality control in aging on the cellular level, human umbilical vein endothelial cells (HUVEC) were subjected to mitochondria-targeted damage by combining staining of mitochondria and irradiation. This treatment induced a short boost of reactive oxygen species, which resulted in transient fragmentation of mitochondria followed by mitophagy, while mitochondrial dynamics were impaired. Furthermore, targeted mitochondrial damage upregulated autophagy factors LC3B, ATG5 and ATG12. Consequently these proteins were overexpressed in HUVEC as an in vitro aging model, which significantly enhanced the replicative life span up to 150% and the number of population doublings up to 200%, whereas overexpression of LAMP-1 did not alter the life span. Overexpression of LC3B, ATG5 and ATG12 resulted in an improved mitochondrial membrane potential, enhanced ATP production and generated anti-apoptotic effects, while ROS levels remained unchanged and the amount of oxidized proteins increased. Taken together, these data relate LC3B, ATG5 and ATG12 to mitochondrial quality control after oxidative damage, and to cellular longevity.


Assuntos
Autofagia , Senescência Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Senescência Celular/efeitos dos fármacos , Galinhas , Citoproteção/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia
17.
Int Rev Cell Mol Biol ; 284: 1-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20875628

RESUMO

Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.


Assuntos
Mitocôndrias/fisiologia , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Autofagia , Humanos
18.
Exp Gerontol ; 45(7-8): 586-95, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20332018

RESUMO

Mild uncoupling of mitochondrial respiration is considered to prolong life span of organisms by reducing the production of reactive oxygen species (ROS). Experimental evidence against this hypothesis has been brought forward by premature senescence in cell cultures treated with uncouplers. Exposing HUVEC to a mixture of nutritionally important fatty acids (oil extract of chicken yolk) mild uncoupling with "naturally acting substances" was performed. This treatment also resulted in premature senescence although ROS production did not increase. Fatty acids activate uncoupling proteins (UCP) in the inner mitochondrial membrane. UCP2 expression proved to be sensitive to the presence of fatty acids but remains unchanged during the ageing process. UCP3 expression in senescent HUVEC and avUCP expression in senescent CEF were considerably less than in young cultures. No indication for protonophoric reduction of mitochondrial membrane potential was found in UCP2 overexpressing HeLa cells and only little in HUVEC. ROS levels increased instead of being reduced in these cells. Stable transfection with UCP2-GFP was possible only in chick embryo fibroblasts and HeLa cells and resulted in decreased proliferation. Stable transfection of HUVEC with UCP2-GFP resulted in death of cultures within one or two weeks. The reason for this behaviour most probably is apoptosis preceded by mitochondrial fragmentation and loss of membrane potential.


Assuntos
Senescência Celular/fisiologia , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Apoptose , Proteínas Aviárias/metabolismo , Sequência de Bases , Catalase/genética , Proliferação de Células , Respiração Celular , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Embrião de Galinha , Primers do DNA/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Glutationa Peroxidase/genética , Células HeLa , Humanos , Canais Iônicos/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Desacoplamento Mitocondrial , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Transfecção , Proteína Desacopladora 2 , Proteína Desacopladora 3
19.
J Cell Sci ; 123(Pt 6): 917-26, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20179104

RESUMO

Mitochondria display different morphologies, depending on cell type and physiological situation. In many senescent cell types, an extensive elongation of mitochondria occurs, implying that the increase of mitochondrial length in senescence could have a functional role. To test this hypothesis, human endothelial cells (HUVECs) were aged in vitro. Young HUVECs had tubular mitochondria, whereas senescent cells were characterized by long interconnected mitochondria. The change in mitochondrial morphology was caused by downregulation of the expression of Fis1 and Drp1, two proteins regulating mitochondrial fission. Targeted photodamage of mitochondria induced the formation of reactive oxygen species (ROS), which triggered mitochondrial fragmentation and loss of membrane potential in young cells, whereas senescent cells proved to be resistant. Alterations of the Fis1 and Drp1 expression levels also influenced the expression of the putative serine-threonine kinase PINK1, which is associated with the PARK6 variant of Parkinson's disease. Downregulation of PINK1 or overexpression of a PINK1 mutant (G309D) increased the sensitivity against ROS in young cells. These results indicate that there is a Drp1- and Fis1-induced, and PINK1-mediated protection mechanism in senescent cells, which, when compromised, could contribute to the age-related progression of Parkinson's disease and arteriosclerosis.


Assuntos
Senescência Celular , Células Endoteliais/citologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Senescência Celular/efeitos da radiação , Dinaminas , Células Endoteliais/enzimologia , Células Endoteliais/efeitos da radiação , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Humanos , Luz , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação , Modelos Biológicos , Estresse Oxidativo/efeitos da radiação , Proteínas Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Veias Umbilicais/citologia , Regulação para Cima/efeitos da radiação
20.
J Steroid Biochem Mol Biol ; 118(1-2): 29-40, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19815065

RESUMO

Translationally controlled tumour protein (TCTP) is an evolutionarily highly conserved molecule implicated in many processes related to cell cycle progression, proliferation and growth, to the protection against harmful conditions including apoptosis and to the human allergic response. We are showing here that after application of mild oxidative stress, human TCTP relocates from the cytoplasm to the nuclei of HaCaT keratinocytes where it directly associates with the ligand-binding domain of endogenous vitamin D(3) receptor (VDR) through its helical domain 2 (AA 71-132). Interestingly, the latter harbours a putative nuclear hormone receptor coregulatory LxxLL-like motif which seems to be involved in the interaction. Moreover, we demonstrate that VDR transcriptionally induces the expression of TCTP by binding to a previously unknown VDR response element within the TCTP promotor. Conversely, ectopically overexpressed TCTP downregulates the amount of VDR on both mRNA as well as protein level. These data, to conclude, suggest a kind of feedback regulation between TCTP and VDR to regulate a variety of (Ca(2+) dependent) cellular effects and in this way further underscore the physiological relevance of this novel protein-protein interaction.


Assuntos
Biomarcadores Tumorais/metabolismo , Calcitriol/fisiologia , Núcleo Celular/metabolismo , Peróxido de Hidrogênio/farmacologia , Queratinócitos/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Biomarcadores Tumorais/genética , Calcitriol/farmacologia , Linhagem Celular Transformada , Citoplasma/metabolismo , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Retroalimentação Fisiológica/fisiologia , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imunoprecipitação , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptores de Calcitriol/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Tumoral 1 Controlada por Tradução , Técnicas do Sistema de Duplo-Híbrido , Elemento de Resposta à Vitamina D/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA