Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol Methods ; 317: 114733, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37068591

RESUMO

ß-Propiolactone (BPL) is an organic compound widely used as an inactivating agent in vaccine development and production, for example for SARS-CoV, SARS-CoV-2 and Influenza viruses. Inactivation of pathogens by BPL is based on an irreversible alkylation of nucleic acids but also on acetylation and cross-linking between proteins, DNA or RNA. However, the protocols for BPL inactivation of viruses vary widely. Handling of infectious, enriched SARS-CoV-2 specimens and diagnostic samples from COVID-19 patients is recommended in biosafety level (BSL)- 3 or BSL-2 laboratories, respectively. We validated BPL inactivation of SARS-CoV-2 in saliva samples with the objective to use saliva from COVID-19 patients for training of scent dogs for the detection of SARS-CoV-2 positive individuals. Therefore, saliva samples and cell culture medium buffered with NaHCO3 (pH 8.3) were comparatively spiked with SARS-CoV-2 and inactivated with 0.1 % BPL for 1 h (h) or 71 h ( ± 1 h) at 2-8 °C, followed by hydrolysis of BPL at 37 °C for 1 or 2 h, converting BPL into non-toxic beta-hydroxy-propionic acid. SARS-CoV-2 inactivation was demonstrated by a titre reduction of up to 10^4 TCID50/ml in the spiked samples for both inactivation periods using virus titration and virus isolation, respectively. The validated method was confirmed by successful inactivation of pathogens in saliva samples from COVID-19 patients. Furthermore, we reviewed the currently available literature on SARS-CoV-2 inactivation by BPL. Accordingly, BPL-inactivated, hydrolysed samples can be handled in a non-laboratory setting. Furthermore, our BPL inactivation protocols can be adapted to validation experiments with other pathogens.


Assuntos
COVID-19 , Vírus , Cães , Animais , Propiolactona , Saliva , Odorantes , COVID-19/diagnóstico , Inativação de Vírus , SARS-CoV-2
2.
Front Med (Lausanne) ; 9: 877259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783627

RESUMO

There is a growing number of COVID-19 patients experiencing long-term symptoms months after their acute SARS-CoV-2 infection. Previous research proved dogs' ability to detect acute SARS-CoV-2 infections, but has not yet shown if dogs also indicate samples of patients with post-COVID-19 condition (Long COVID). Nine dogs, previously trained to detect samples of acute COVID-19 patients, were confronted with samples of Long COVID patients in two testing scenarios. In test scenario I (samples of acute COVID-19 vs. Long COVID) dogs achieved a mean sensitivity (for acute COVID-19) of 86.7% (95%CI: 75.4-98.0%) and a specificity of 95.8% (95%CI: 92.5-99.0%). When dogs were confronted with Long COVID and negative control samples in scenario IIa, dogs achieved a mean sensitivity (for Long COVID) of 94.4 (95%CI: 70.5-100.0%) and a specificity of 96.1% (95%CI: 87.6-100.0%). In comparison, when acute SARS-CoV-2 positive samples and negative control samples were comparatively presented (scenario IIb), a mean sensitivity of 86.9 (95%CI: 55.7-100.0%) and a specificity of 88.1% (95%CI: 82.7-93.6%) was attained. This pilot study supports the hypothesis of volatile organic compounds (VOCs) being long-term present after the initial infection in post-COVID-19 patients. Detection dogs, trained with samples of acute COVID-19 patients, also identified samples of Long COVID patients with a high sensitivity when presented next to samples of healthy individuals. This data may be used for further studies evaluating the pathophysiology underlying Long COVID and the composition of specific VOC-patterns released by SARS-CoV-2 infected patients throughout the course of this complex disease.

3.
Front Med (Lausanne) ; 8: 749588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869443

RESUMO

Background: Testing of possibly infected individuals remains cornerstone of containing the spread of SARS-CoV-2. Detection dogs could contribute to mass screening. Previous research demonstrated canines' ability to detect SARS-CoV-2-infections but has not investigated if dogs can differentiate between COVID-19 and other virus infections. Methods: Twelve dogs were trained to detect SARS-CoV-2 positive samples. Three test scenarios were performed to evaluate their ability to discriminate SARS-CoV-2-infections from viral infections of a different aetiology. Naso- and oropharyngeal swab samples from individuals and samples from cell culture both infected with one of 15 viruses that may cause COVID-19-like symptoms were presented as distractors in a randomised, double-blind study. Dogs were either trained with SARS-CoV-2 positive saliva samples (test scenario I and II) or with supernatant from cell cultures (test scenario III). Results: When using swab samples from individuals infected with viruses other than SARS-CoV-2 as distractors (test scenario I), dogs detected swab samples from SARS-CoV-2-infected individuals with a mean diagnostic sensitivity of 73.8% (95% CI: 66.0-81.7%) and a specificity of 95.1% (95% CI: 92.6-97.7%). In test scenario II and III cell culture supernatant from cells infected with SARS-CoV-2, cells infected with other coronaviruses and non-infected cells were presented. Dogs achieved mean diagnostic sensitivities of 61.2% (95% CI: 50.7-71.6%, test scenario II) and 75.8% (95% CI: 53.0-98.5%, test scenario III), respectively. The diagnostic specificities were 90.9% (95% CI: 87.3-94.6%, test scenario II) and 90.2% (95% CI: 81.1-99.4%, test scenario III), respectively. Conclusion: In all three test scenarios the mean specificities were above 90% which indicates that dogs can distinguish SARS-CoV-2-infections from other viral infections. However, compared to earlier studies our scent dogs achieved lower diagnostic sensitivities. To deploy COVID-19 detection dogs as a reliable screening method it is therefore mandatory to include a variety of samples from different viral respiratory tract infections in dog training to ensure a successful discrimination process.

4.
BMC Infect Dis ; 21(1): 838, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412582

RESUMO

The extraordinary olfactory sense of canines combined with the possibility to learn by operant conditioning enables dogs for their use in medical detection in a wide range of applications. Research on the ability of medical detection dogs for the identification of individuals with infectious or non-infectious diseases has been promising, but compared to the well-established and-accepted use of sniffer dogs by the police, army and customs for substances such as money, explosives or drugs, the deployment of medical detection dogs is still in its infancy. There are several factors to be considered for standardisation prior to deployment of canine scent detection dogs. Individual odours in disease consist of different volatile organic molecules that differ in magnitude, volatility and concentration. Olfaction can be influenced by various parameters like genetics, environmental conditions, age, hydration, nutrition, microbiome, conditioning, training, management factors, diseases and pharmaceuticals. This review discusses current knowledge on the function and importance of canines' olfaction and evaluates its limitations and the potential role of the dog as a biomedical detector for infectious and non-infectious diseases.


Assuntos
Odorantes , Olfato , Animais , Cães , Aprendizagem
5.
BMC Infect Dis ; 21(1): 707, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315418

RESUMO

BACKGROUND: The main strategy to contain the current SARS-CoV-2 pandemic remains to implement a comprehensive testing, tracing and quarantining strategy until vaccination of the population is adequate. Scent dogs could support current testing strategies. METHODS: Ten dogs were trained for 8 days to detect SARS-CoV-2 infections in beta-propiolactone inactivated saliva samples. The subsequent cognitive transfer performance for the recognition of non-inactivated samples were tested on three different body fluids (saliva, urine, and sweat) in a randomised, double-blind controlled study. RESULTS: Dogs were tested on a total of 5242 randomised sample presentations. Dogs detected non-inactivated saliva samples with a diagnostic sensitivity of 84% (95% CI: 62.5-94.44%) and specificity of 95% (95% CI: 93.4-96%). In a subsequent experiment to compare the scent recognition between the three non-inactivated body fluids, diagnostic sensitivity and specificity were 95% (95% CI: 66.67-100%) and 98% (95% CI: 94.87-100%) for urine, 91% (95% CI: 71.43-100%) and 94% (95% CI: 90.91-97.78%) for sweat, 82% (95% CI: 64.29-95.24%), and 96% (95% CI: 94.95-98.9%) for saliva respectively. CONCLUSIONS: The scent cognitive transfer performance between inactivated and non-inactivated samples as well as between different sample materials indicates that global, specific SARS-CoV-2-associated volatile compounds are released across different body secretions, independently from the patient's symptoms. All tested body fluids appear to be similarly suited for reliable detection of SARS-CoV-2 infected individuals.


Assuntos
Líquidos Corporais , COVID-19 , Animais , Cães , Humanos , Odorantes , Pandemias , SARS-CoV-2 , Saliva
6.
BMC Infect Dis ; 20(1): 536, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703188

RESUMO

BACKGROUND: As the COVID-19 pandemic continues to spread, early, ideally real-time, identification of SARS-CoV-2 infected individuals is pivotal in interrupting infection chains. Volatile organic compounds produced during respiratory infections can cause specific scent imprints, which can be detected by trained dogs with a high rate of precision. METHODS: Eight detection dogs were trained for 1 week to detect saliva or tracheobronchial secretions of SARS-CoV-2 infected patients in a randomised, double-blinded and controlled study. RESULTS: The dogs were able to discriminate between samples of infected (positive) and non-infected (negative) individuals with average diagnostic sensitivity of 82.63% (95% confidence interval [CI]: 82.02-83.24%) and specificity of 96.35% (95% CI: 96.31-96.39%). During the presentation of 1012 randomised samples, the dogs achieved an overall average detection rate of 94% (±3.4%) with 157 correct indications of positive, 792 correct rejections of negative, 33 incorrect indications of negative or incorrect rejections of 30 positive sample presentations. CONCLUSIONS: These preliminary findings indicate that trained detection dogs can identify respiratory secretion samples from hospitalised and clinically diseased SARS-CoV-2 infected individuals by discriminating between samples from SARS-CoV-2 infected patients and negative controls. This data may form the basis for the reliable screening method of SARS-CoV-2 infected people.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Programas de Rastreamento/métodos , Odorantes/análise , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Animais , Brônquios/química , Brônquios/virologia , COVID-19 , Estudos de Casos e Controles , Cães , Método Duplo-Cego , Humanos , Pandemias/prevenção & controle , Projetos Piloto , SARS-CoV-2 , Saliva/química , Saliva/virologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA