Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Stress ; 15: 100404, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34632008

RESUMO

Delayed onset of antidepressant action is a shortcoming in depression treatment. Ketamine and its metabolite (2R,6R)-hydroxynorketamine (HNK) have emerged as promising rapid-acting antidepressants. However, their mechanism of action remains unknown. In this study, we first described the anxious and depression-prone inbred mouse strain, DBA/2J, as an animal model to assess the antidepressant-like effects of ketamine and HNK in vivo. To decode the molecular mechanisms mediating HNK's rapid antidepressant effects, a longitudinal cerebrospinal fluid (CSF) proteome profiling of its acute and sustained effects was conducted using an unbiased, hypothesis-free mass spectrometry-based proteomics approach. A total of 387 proteins were identified, with a major implication of significantly differentially expressed proteins in the glucocorticoid receptor (GR) signaling pathway, providing evidence for a link between HNK and regulation of the stress hormone system. Mechanistically, we identified HNK to repress GR-mediated transcription and reduce hormonal sensitivity of GR in vitro. In addition, mammalian target of rapamycin (mTOR) and brain-derived neurotrophic factor (BDNF) were predicted to be important upstream regulators of HNK treatment. Our results contribute to precise understanding of the temporal dynamics and molecular targets underlying HNK's rapid antidepressant-like effects, which can be used as a benchmark for improved treatment strategies for depression in future.

2.
J Endocrinol ; 249(1): 19-30, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33608492

RESUMO

Stress has a major impact on the modulation of metabolism, as previously evidenced by hyperglycemia following chronic social defeat (CSD) stress in mice. Although CSD-triggered metabolic dysregulation might predispose to pre-diabetic conditions, insulin sensitivity remained intact, and obesity did not develop, when animals were fed with a standard diet (SD). Here, we investigated whether a nutritional challenge, a high-fat diet (HFD), aggravates the metabolic phenotype and whether there are particularly sensitive time windows for the negative consequences of HFD exposure. Chronically stressed male mice and controls (CTRL) were kept under (i) SD-conditions, (ii) with HFD commencing post-CSD, or (iii) provided with HFD lasting throughout and after CSD. Under SD conditions, stress increased glucose levels early post-CSD. Both HFD regimens increased glucose levels in non-stressed mice but not in stressed mice. Nonetheless, when HFD was provided after CSD, stressed mice did not differ from controls in long-term body weight gain, fat tissue mass and plasma insulin, and leptin levels. In contrast, when HFD was continuously available, stressed mice displayed reduced body weight gain, lowered plasma levels of insulin and leptin, and reduced white adipose tissue weights as compared to their HFD-treated non-stressed controls. Interestingly, stress-induced adrenal hyperplasia and hypercortisolemia were observed in mice treated with SD and with HFD after CSD but not in stressed mice exposed to a continuous HFD treatment. The present work demonstrates that CSD can reduce HFD-induced metabolic dysregulation. Hence, HFD during stress may act beneficially, as comfort food, by decreasing stress-induced metabolic demands.


Assuntos
Antígenos de Grupos Sanguíneos/análise , Dieta Hiperlipídica , Estresse Psicológico/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/psicologia , Ingestão de Energia , Teste de Tolerância a Glucose , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/psicologia , Derrota Social , Estresse Psicológico/sangue , Aumento de Peso
3.
Transl Psychiatry ; 11(1): 4, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414410

RESUMO

Major depressive disorder is the most prevalent mental illness worldwide, still its pharmacological treatment is limited by various challenges, such as the large heterogeneity in treatment response and the lack of insight into the neurobiological pathways underlying this phenomenon. To decode the molecular mechanisms shaping antidepressant response and to distinguish those from general paroxetine effects, we used a previously established approach targeting extremes (i.e., good vs poor responder mice). We focused on the dentate gyrus (DG), a subregion of major interest in the context of antidepressant mechanisms. Transcriptome profiling on micro-dissected DG granule cells was performed to (i) reveal cell-type-specific changes in paroxetine-induced gene expression (paroxetine vs vehicle) and (ii) to identify molecular signatures of treatment response within a cohort of paroxetine-treated animals. We identified 112 differentially expressed genes associated with paroxetine treatment. The extreme group comparison (good vs poor responder) yielded 211 differentially expressed genes. General paroxetine effects could be distinguished from treatment response-associated molecular signatures, with a differential gene expression overlap of only 4.6% (15 genes). Biological pathway enrichment and cluster analyses identified candidate mechanisms associated with good treatment response, e.g., neuropeptide signaling, synaptic transmission, calcium signaling, and regulation of glucocorticoid secretion. Finally, we examined glucocorticoid receptor (GR)-dependent regulation of selected response-associated genes to analyze a hypothesized interplay between GR signaling and good antidepressant treatment response. Among the most promising candidates, we suggest potential targets such as the developmental gene Otx2 or Htr2c for further investigations into antidepressant treatment response in the future.


Assuntos
Transtorno Depressivo Maior , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Giro Denteado , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Hipocampo , Camundongos , Paroxetina/farmacologia , Paroxetina/uso terapêutico
4.
Proc Natl Acad Sci U S A ; 115(43): E10187-E10196, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30301805

RESUMO

Stringent glucose demands render the brain susceptible to disturbances in the supply of this main source of energy, and chronic stress may constitute such a disruption. However, whether stress-associated cognitive impairments may arise from disturbed glucose regulation remains unclear. Here we show that chronic social defeat (CSD) stress in adult male mice induces hyperglycemia and directly affects spatial memory performance. Stressed mice developed hyperglycemia and impaired glucose metabolism peripherally as well as in the brain (demonstrated by PET and induced metabolic bioluminescence imaging), which was accompanied by hippocampus-related spatial memory impairments. Importantly, the cognitive and metabolic phenotype pertained to a subset of stressed mice and could be linked to early hyperglycemia 2 days post-CSD. Based on this criterion, ∼40% of the stressed mice had a high-glucose (glucose >150 mg/dL), stress-susceptible phenotype. The relevance of this biomarker emerges from the effects of the glucose-lowering sodium glucose cotransporter 2 inhibitor empagliflozin, because upon dietary treatment, mice identified as having high glucose demonstrated restored spatial memory and normalized glucose metabolism. Conversely, reducing glucose levels by empagliflozin in mice that did not display stress-induced hyperglycemia (resilient mice) impaired their default-intact spatial memory performance. We conclude that hyperglycemia developing early after chronic stress threatens long-term glucose homeostasis and causes spatial memory dysfunction. Our findings may explain the comorbidity between stress-related and metabolic disorders, such as depression and diabetes, and suggest that cognitive impairments in both types of disorders could originate from excessive cerebral glucose accumulation.


Assuntos
Comportamento Animal/fisiologia , Doença Crônica/psicologia , Hiperglicemia/fisiopatologia , Transtornos da Memória/fisiopatologia , Memória Espacial/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Doença Crônica/tratamento farmacológico , Glucose/metabolismo , Glucosídeos/farmacologia , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hiperglicemia/psicologia , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Desejabilidade Social , Memória Espacial/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia
5.
Psychoneuroendocrinology ; 91: 149-158, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29555365

RESUMO

Understanding the neurobiological mechanisms underlying the response to an acute stressor may provide novel insights into successful stress-coping strategies. Acute behavioral stress-effects may be restricted to a specific time window early after stress-induction. However, existing behavioral test batteries typically span multiple days or even weeks, limiting the feasibility for a broad behavioral analysis following acute stress. Here, we designed a novel comprehensive behavioral test battery in male mice that assesses multiple behavioral dimensions within a sufficiently brief time window to capture acute stress-effects and its temporal profile. Using this battery, we investigated the behavioral impact of acute social defeat stress (ASD) early thereafter (ASD-early, ∼4 h), when circulating corticosterone levels were elevated, and late after stress-induction (ASD-late, ∼8 h), when corticosterone were returned to timed control levels. ASD-early, but not ASD-late, displayed hippocampal-dependent cognitive impairments in the Y-maze and in the spatial object recognition test. The actin-binding protein (ABP) Tumor suppressor down-regulated in renal cell carcinoma 1 (DRR1) has been described as resilience-promoting factor but the potential of DRR1 to curb stress-effects has not been investigated. Hippocampal DRR1 mRNA-expression was increased in ASD-early and ASD-late whereas DRR1-protein levels were increased only in ASD-late. We hypothesized that the absence of hippocampal DRR1 protein-upregulation in ASD-early caused the associated cognitive impairments. Hence, virus-mediated hippocampal DRR1-overexpression was induced as putative treatment, but cognitive deficits in ASD-early were not improved. We conclude that hippocampal DRR1-overexpression is insufficient to protect from the detrimental cognitive effects following acute social stress where perhaps a more global response in local actin dynamics, involving multiple stress-responsive ABPs that act synergistically, was warranted.


Assuntos
Estresse Psicológico/patologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Corticosterona/metabolismo , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fenótipo , Proteínas Supressoras de Tumor/metabolismo
6.
Biol Psychiatry ; 78(2): 95-106, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24768258

RESUMO

BACKGROUND: Actin depolymerizing proteins of the actin depolymerizing factor (ADF)/cofilin family are essential for actin dynamics, which is critical for synaptic function. Two ADF/cofilin family members, ADF and n-cofilin, are highly abundant in the brain, where they are present in excitatory synapses. Previous studies demonstrated the relevance of n-cofilin for postsynaptic plasticity, associative learning, and anxiety. These studies also suggested overlapping functions for ADF and n-cofilin. METHODS: We performed pharmacobehavioral, electrophysiologic, and electron microscopic studies on ADF and n-cofilin single mutants and double mutants (named ACC mice) to characterize the importance of ADF/cofilin activity for synapse physiology and mouse behavior. RESULTS: The ACC mice, but not single mutants, exhibited hyperlocomotion, impulsivity, and impaired working memory. Hyperlocomotion and impulsive behavior were reversed by methylphenidate, a psychostimulant commonly used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Also, ACC mice displayed a disturbed morphology of striatal excitatory synapses, accompanied by strongly increased glutamate release. Blockade of dopamine or glutamate transmission resulted in normal locomotion. CONCLUSIONS: Our study reveals that ADHD can result from a disturbed balance between excitation and inhibition in striatal circuits, providing novel insights into the mechanisms underlying this neurobehavioral disorder. Our results link actin dynamics to ADHD, suggesting that mutations in actin regulatory proteins may contribute to the etiology of ADHD in humans.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Cofilina 1/fisiologia , Corpo Estriado/ultraestrutura , Destrina/fisiologia , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estimulantes do Sistema Nervoso Central/farmacologia , Cofilina 1/genética , Cofilina 1/metabolismo , Destrina/genética , Modelos Animais de Doenças , Antagonistas de Dopamina , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Potenciais Pós-Sinápticos Excitadores , Glutamatos/metabolismo , Comportamento Impulsivo/efeitos dos fármacos , Comportamento Impulsivo/fisiologia , Masculino , Memória de Curto Prazo/fisiologia , Metilfenidato/farmacologia , Camundongos , Camundongos Knockout , Atividade Motora/genética , Comportamento de Nidação , Neurônios/metabolismo , Neurônios/ultraestrutura , Fenótipo , Receptores Dopaminérgicos/fisiologia , Substância Negra/metabolismo , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA