Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Front Vet Sci ; 11: 1362011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872793

RESUMO

This study aims to investigate bacterial communities and antimicrobial resistance (AMR) in airborne dust from pig farms. Airborne dust, pig feces and feed were collected from nine pig farms in Thailand. Airborne dust samples were collected from upwind and downwind (25 meters from pig house), and inside (in the middle of the pig house) of the selected pig house. Pig feces and feed samples were individually collected from the pen floor and feed trough from the same pig house where airborne dust was collected. A direct total bacteria count on each sampling plate was conducted and averaged. The ESKAPE pathogens together with Escherichia coli, Salmonella, and Streptococcus were examined. A total of 163 bacterial isolates were collected and tested for MICs. Pooled bacteria from the inside airborne dust samples were analyzed using Metagenomic Sequencing. The highest bacterial concentration (1.9-11.2 × 103 CFU/m3) was found inside pig houses. Staphylococcus (n = 37) and Enterococcus (n = 36) were most frequent bacterial species. Salmonella (n = 3) were exclusively isolated from feed and feces. Target bacteria showed a variety of resistance phenotypes, and the same bacterial species with the same resistance phenotype were found in airborne dust, feed and fecal from each farm. Metagenomic Sequencing analysis revealed 1,652 bacterial species across all pig farms, of which the predominant bacterial phylum was Bacillota. One hundred fifty-nine AMR genes of 12 different antibiotic classes were identified, with aminoglycoside resistance genes (24%) being the most prevalent. A total of 251 different plasmids were discovered, and the same plasmid was detected in multiple farms. In conclusion, the phenotypic and metagenomic results demonstrated that airborne dust from pig farms contained a diverse array of bacterial species and genes encoding resistance to a range of clinically important antimicrobial agents, indicating the significant role in the spread of AMR bacterial pathogens with potential hazards to human health. Policy measurements to address AMR in airborne dust from livestock farms are mandatory.

2.
Curr Microbiol ; 81(8): 221, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874629

RESUMO

Schaalia turicensis is facultative anaerobic Gram-positive bacillus that commonly inhabits the oropharynx, gastrointestinal, and genitourinary tract of healthy individuals. This organism has been co-isolated with Neisseria gonorrhoeae from 15-year-old Thai male patient with gonococcal urethritis in Bangkok, Thailand. In this study, we characterized the class 1 integron in S. turicensis isolate using whole-genome sequencing and bioinformatics analysis. Sequencing analysis confirmed the presence of an imperfect class 1 integron located on chromosome and a novel 24.5-kb-long composite transposon, named Tn7083. The transposon Tn7083 carried genes encoding chloramphenicol resistance (cmx), sulfonamide resistance (sul1), and aminoglycoside resistance [aph(6)-Id (strB), aph(3'')-Ib (strA), aph(3')-Ia].


Assuntos
Antibacterianos , Genoma Bacteriano , Gonorreia , Uretrite , Humanos , Masculino , Tailândia , Uretrite/microbiologia , Gonorreia/microbiologia , Antibacterianos/farmacologia , Adolescente , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/isolamento & purificação , Neisseria gonorrhoeae/classificação , Neisseria gonorrhoeae/efeitos dos fármacos , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética
3.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38746391

RESUMO

Accurate taxonomic profiling of microbial taxa in a metagenomic sample is vital to gain insights into microbial ecology. Recent advancements in sequencing technologies have contributed tremendously toward understanding these microbes at species resolution through a whole shotgun metagenomic (WMS) approach. In this study, we developed a new bioinformatics tool, CAIM, for accurate taxonomic classification and quantification within both long- and short-read metagenomic samples using an alignment-based method. CAIM depends on two different containment techniques to identify species in metagenomic samples using their genome coverage information to filter out false positives rather than the traditional approach of relative abundance. In addition, we propose a nucleotide-count based abundance estimation, which yield lesser root mean square error than the traditional read-count approach. We evaluated the performance of CAIM on 28 metagenomic mock communities and 2 synthetic datasets by comparing it with other top-performing tools. CAIM maintained a consitently good performance across datasets in identifying microbial taxa and in estimating relative abundances than other tools. CAIM was then applied to a real dataset sequenced on both Nanopore (with and without amplification) and Illumina sequencing platforms and found high similality of taxonomic profiles between the sequencing platforms. Lastly, CAIM was applied to fecal shotgun metagenomic datasets of 232 colorectal cancer patients and 229 controls obtained from 4 different countries and primary 44 liver cancer patients and 76 controls. The predictive performance of models using the genome-coverage cutoff was better than those using the relative-abundance cutoffs in discriminating colorectal cancer and primary liver cancer patients from healthy controls with a highly confident species markers.

4.
Bioinform Adv ; 4(1): vbae058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736685

RESUMO

Summary: The revised WHO guidelines for classifying and grading brain tumors include several copy number variation (CNV) markers. The turnaround time for detecting CNVs and alterations throughout the entire genome is drastically reduced with the customized read incremental approach on the nanopore platform. However, this approach is challenging for non-bioinformaticians due to the need to use multiple software tools, extract CNV markers and interpret results, which creates barriers due to the time and specialized resources that are necessary. To address this problem and help clinicians classify and grade brain tumors, we developed GLIMMERS: glioma molecular markers exploration using long-read sequencing, an open-access tool that automatically analyzes nanopore-based CNV data and generates simplified reports. Availability and implementation: GLIMMERS is available at https://gitlab.com/silol_public/glimmers under the terms of the MIT license.

5.
Sci Rep ; 14(1): 9455, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658744

RESUMO

The Asian king vulture (AKV), a vital forest scavenger, is facing globally critical endangerment. This study aimed to construct a reference genome to unveil the mechanisms underlying its scavenger abilities and to assess the genetic relatedness of the captive population in Thailand. A reference genome of a female AKV was assembled from sequencing reads obtained from both PacBio long-read and MGI short-read sequencing platforms. Comparative genomics with New World vultures (NWVs) and other birds in the Family Accipitridae revealed unique gene families in AKV associated with retroviral genome integration and feather keratin, contrasting with NWVs' genes related to olfactory reception. Expanded gene families in AKV were linked to inflammatory response, iron regulation and spermatogenesis. Positively selected genes included those associated with anti-apoptosis, immune response and muscle cell development, shedding light on adaptations for carcass consumption and high-altitude soaring. Using restriction site-associated DNA sequencing (RADseq)-based genome-wide single nucleotide polymorphisms (SNPs), genetic relatedness and inbreeding status of five captive AKVs were determined, revealing high genomic inbreeding in two females. In conclusion, the AKV reference genome was established, providing insights into its unique characteristics. Additionally, the potential of RADseq-based genome-wide SNPs for selecting AKV breeders was demonstrated.


Assuntos
Espécies em Perigo de Extinção , Falconiformes , Genoma , Polimorfismo de Nucleotídeo Único , Animais , Falconiformes/genética , Feminino , Variação Genética , Genômica/métodos , Masculino , Tailândia
6.
Brain Pathol ; 34(1): e13203, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574201

RESUMO

The 2021 WHO Classification of Central Nervous System Tumors recommended evaluation of cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion in addition to codeletion of 1p/19q to characterize IDH-mutant gliomas. Here, we demonstrated the use of a nanopore-based copy-number variation sequencing (nCNV-seq) approach to simultaneously identify deletions of CDKN2A/B and 1p/19q. The nCNV-seq approach was initially evaluated on three distinct glioma cell lines and then applied to 19 IDH-mutant gliomas (8 astrocytomas and 11 oligodendrogliomas) from patients. The whole-arm 1p/19q codeletion was detected in all oligodendrogliomas with high concordance among nCNV-seq, FISH, DNA methylation profiling, and whole-genome sequencing. For the CDKN2A/B deletion, nCNV-seq detected the loss in both astrocytoma and oligodendroglioma, with strong correlation with the CNV profiles derived from whole-genome sequencing (Pearson correlation (r) = 0.95, P < 2.2 × 10-16 to r = 0.99, P < 2.2 × 10-16 ) and methylome profiling. Furthermore, nCNV-seq can differentiate between homozygous and hemizygous deletions of CDKN2A/B. Taken together, nCNV-seq holds promise as a new, alternative approach for a rapid and simultaneous detection of the molecular signatures of IDH-mutant gliomas without capital expenditure for a sequencer.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Sequenciamento por Nanoporos , Oligodendroglioma , Humanos , Oligodendroglioma/genética , Oligodendroglioma/patologia , Neoplasias Encefálicas/patologia , Mutação , Glioma/patologia , Astrocitoma/patologia , Isocitrato Desidrogenase/genética , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19
7.
Microbes Infect ; : 105273, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38070594

RESUMO

Streptococcus suis is a causative agent of swine and human infections. Genomic analysis indicated that eight S. suis serotype 5 strains recovered from human patients and pigs carried many virulence-associated genes and markers defining pathogenic pathotypes. The strains were sequence types diverse and clustered within either minimum core genome group 3 (MCG-3) or MCG-7-3. Almost all the serotype 5 strains were non-susceptible to penicillin, ceftriaxone, erythromycin, and levofloxacin. Resistance to tetracycline and clindamycin was observed in all strains. The antimicrobial resistance genes tet(O), tet(O/W/32/O), tet(W), tet(44), erm(B), ant(6)-Ia, lsaE, and lnuB were found in these strains. Moderate-to-large numbers of substitutions were observed in three penicillin-binding proteins (PBP)-PBP1A, PBP2B, and PBP2X-in the penicillin-non-susceptible serotype 5 isolates that were involved in ß-lactam-non-susceptibility. Comparative genomics between the serotype 5 and 2 strains revealed that only 15 genes absent from the serotype 2 strains were shared by all the serotype 5 strains. However, some additional genes were present only in some of the serotype 5 strains. This study highlighted the pathogenic potential of virulent serotype 5 strains in humans and pigs and the need for increased monitoring of penicillin-non-susceptibility in S. suis serotypes other than for serotype 2.

8.
Sci Rep ; 13(1): 17685, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848699

RESUMO

Asian elephant (Elephas maximus) is the national symbol of Thailand and linked to Thai history and culture for centuries. The elephant welfare improvement is one of the major components to achieve sustainable captive management. Microbiome inhabiting digestive tracts have been shown with symbiotic relations to host health. This work provided high-resolution microbiome profiles of 32 captive elephants at a species level by utilizing full-length 16S rRNA gene nanopore sequencing. Eleven common uncultured bacterial species were found across elephants fed with solid food including uncultured bacterium Rikenellaceae RC9 gut group, Kiritimatiellae WCHB1-41, Phascolarctobacterium, Oscillospiraceae NK4A214 group, Christensenellaceae R-7 group, Oribacterium, Oscillospirales UCG-010, Lachnospiraceae, Bacteroidales F082, uncultured rumen Rikenellaceae RC9 gut group, and Lachnospiraceae AC2044 group. We observed microbiome shifts along the age classes of baby (0-2 years), juvenile (2-10 years), and adult (> 10 years). Interestingly, we found distinct microbiome profiles among adult elephants fed with a local palm, Caryota urens, as a supplement. Potential beneficial microbes have been revealed according to the age classes and feed diets. The retrieved microbiome data could be provided as good baseline microbial profiles for monitoring elephant health, suggesting further studies towards dietary selection suitable for each age class and the use of local supplementary diets.


Assuntos
Elefantes , Sequenciamento por Nanoporos , Animais , RNA Ribossômico 16S/genética , Tailândia , Dieta
9.
IMA Fungus ; 14(1): 18, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674240

RESUMO

Among molecular-based techniques for fungal identification, Sanger sequencing of the primary universal fungal DNA barcode, the internal transcribed spacer (ITS) region (ITS1, 5.8S, ITS2), is commonly used in clinical routine laboratories due to its simplicity, universality, efficacy, and affordability for fungal species identification. However, Sanger sequencing fails to identify mixed ITS sequences in the case of mixed infections. To overcome this limitation, different high-throughput sequencing technologies have been explored. The nanopore-based technology is now one of the most promising long-read sequencing technologies on the market as it has the potential to sequence the full-length ITS region in a single read. In this study, we established a workflow for species identification using the sequences of the entire ITS region generated by nanopore sequencing of both pure yeast isolates and mocked mixed species reads generated with different scenarios. The species used in this study included Candida albicans (n = 2), Candida tropicalis (n = 1), Nakaseomyces glabratus (formerly Candida glabrata) (n = 1), Trichosporon asahii (n = 2), Pichia kudriavzevii (formerly Candida krusei) (n = 1), and Cryptococcus neoformans (n = 1). Comparing various methods to generate the consensus sequence for fungal species identification, the results from this study indicate that read clustering using a modified version of the NanoCLUST pipeline is more sensitive than Canu or VSEARCH, as it classified species accurately with a lower abundance cluster of reads (3% abundance compared to 10% with VSEARCH). The modified NanoCLUST also reduced the number of classified clusters compared to VSEARCH, making the subsequent BLAST+ analysis faster. Subsampling of the datasets, which reduces the size of the datasets by approximately tenfold, did not significantly affect the identification results in terms of the identified species name, percent identity, query coverage, percentage of reads in the classified cluster, and the number of clusters. The ability of the method to distinguish mixed species within sub-populations of large datasets has the potential to aid computer analysis by reducing the required processing power. The herein presented new sequence analysis pipeline will facilitate better interpretation of fungal sequence data for species identification.

10.
Data Brief ; 50: 109550, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37743888

RESUMO

When several continuous guanine runs are present closely in a nucleic acid sequence, a secondary structure called G-quadruplex can form (G4s). Such structures in the genome could serve as structural and functional regulators in gene expression, DNA-protein binding, epigenetic modification, and genotoxic stress. Several types of G4-forming DNA sequences exist, including bulged G4-forming sequences (G4-BS). Such bulges occur due to the presence of non-guanine bases in specific locations (G-runs) in the G4-forming sequences. At present, search algorithms do not identify stable G4-BS conformations, making genome-wide studies of G4-like structures difficult. Data provided in this study are related to a published article "Stable bulged G-quadruplexes in the human genome: Identification, experimental validation and functionalization" published by Nucleic Acids Research [DIO.org/10.193/nar/gkad252]. Based on our studies in vitro and G4-seq and G4 CUT&Tag data analysis, we have specified and validated three pG4-BS models. In this article, a large collection of 'raw' (unfiltered) dataset is presented, which includes three subfamilies of pG4-BS. For each of pG4-BS, we provide strand-specific genomic boundaries. Data on pG4-BS might be useful in elucidating their structural, functional, and evolutionary roles. Furthermore, they may provide insight into the pathobiology of G4-like structures and their potential therapeutic applications.

12.
Front Genet ; 14: 1213457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424729

RESUMO

Nanopore sequencing has been examined as a method for rapid and high-resolution human leukocyte antigen (HLA) typing in recent years. We aimed to apply ultrarapid nanopore-based HLA typing for HLA class I alleles associated with drug hypersensitivity, including HLA-A*31:01, HLA-B*15:02, and HLA-C*08:01. Most studies have used the Oxford Nanopore Ligation Sequencing kit for HLA typing, which requires several enzymatic reactions and remains relatively expensive, even when the samples are multiplexed. Here, we used the Oxford Nanopore Rapid Barcoding kit, which is transposase-based, with library preparation taking less than 1 h of hands-on time and requiring minimal reagents. Twenty DNA samples were genotyped for HLA-A, -B, and -C; 11 samples were from individuals of different ethnicity and nine were from Thai individuals. Two primer sets, a commercial set and a published set, were used to amplify the HLA-A, -B, and -C genes. HLA-typing tools that used different algorithms were applied and compared. We found that without using several third-party reagents, the transposase-based method reduced the hands-on time from approximately 9 h to 4 h, making this a viable approach for obtaining same-day results from 2 to 24 samples. However, an imbalance in the PCR amplification of different haplotypes could affect the accuracy of typing results. This work demonstrates the ability of transposase-based sequencing to report 3-field HLA alleles and its potential for race- and population-independent testing at considerably decreased time and cost.

13.
BMC Genomics ; 24(1): 405, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468842

RESUMO

BACKGROUND: Preterm labor syndrome is associated with high perinatal morbidity and mortality, and intra-amniotic infection is a cause of preterm labor. The standard identification of causative microorganisms is based on the use of biochemical phenotypes, together with broth dilution-based antibiotic susceptibility from organisms grown in culture. However, such methods could not provide an accurate epidemiological aspect and a genetic basis of antimicrobial resistance leading to an inappropriate antibiotic administration. Hybrid genome assembly is a combination of short- and long-read sequencing, which provides better genomic resolution and completeness for genotypic identification and characterization. Herein, we performed a hybrid whole genome assembly sequencing of a pathogen associated with acute histologic chorioamnionitis in women presenting with PPROM. RESULTS: We identified Enterococcus faecium, namely E. faecium strain RAOG174, with several antibiotic resistance genes, including vancomycin and aminoglycoside. Virulence-associated genes and potential bacteriophage were also identified in this genome. CONCLUSION: We report herein the first study demonstrating the use of hybrid genome assembly and genomic analysis to identify E. faecium ST17 as a pathogen associated with acute histologic chorioamnionitis. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. The occurrence of E. faecium ST17 raised the awareness of the colonization of clinically relevant E. faecium and the carrying of antibiotic resistance. This finding has brought the advantages of genomic approach in the identification of the bacterial species and antibiotic resistance gene for E. faecium for appropriate antibiotic use to improve maternal and neonatal care.


Assuntos
Corioamnionite , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Trabalho de Parto Prematuro , Gravidez , Humanos , Feminino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Corioamnionite/genética , Corioamnionite/tratamento farmacológico , Enterococcus faecium/genética , Genômica , Trabalho de Parto Prematuro/tratamento farmacológico , Resistência Microbiana a Medicamentos , Infecções por Bactérias Gram-Positivas/microbiologia
14.
PLoS One ; 18(7): e0288840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498866

RESUMO

Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Herein, we performed genomic analysis of seven S. suis serotype 4 strains belonging to clonal complex (CC) 94 that were recovered from a human patient or from diseased and clinically healthy pigs. Genomic exploration and comparisons, as well as in vitro cytotoxicity tests, indicated that S. suis CC94 serotype 4 strains are potentially virulent. Genomic analysis revealed that all seven strains clustered within minimum core genome group 3 (MCG-3) and had a high number of virulence-associated genes similar to those of virulent serotype 2 strains. Cytotoxicity assays showed that both the human lung adenocarcinoma cell line and HeLa cells rapidly lost viability following incubation for 4 h with the strains at a concentration of 106 bacterial cells. The human serotype 4 strain (ID36054) decreased cell viability profoundly and similarly to the control serotype 2 strain P1/7. In addition, strain ST1689 (ID34572), isolated from a clinically healthy pig, presented similar behaviour in an adenocarcinoma cell line and HeLa cells. The antimicrobial resistance genes tet(O) and ermB that confer resistance to tetracyclines, macrolides, and lincosamides were commonly found in the strains. However, aminoglycoside and streptothricin resistance genes were found only in certain strains in this study. Our results indicate that S. suis CC94 serotype 4 strains are potentially pathogenic and virulent and should be monitored.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Humanos , Animais , Sorogrupo , Virulência/genética , Células HeLa , Genômica , Antibacterianos , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Doenças dos Suínos/microbiologia
15.
Sci Rep ; 13(1): 7573, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165206

RESUMO

Thua Nao is a Thai traditional fermented soybean food and low-cost protein supplement. This study aimed to evaluate the bacterial community in Thua Nao from northern Thailand and assess potentially active short-chain fatty acids (SCFAs)-related bacteria. Sixty-five Thua Nao consisting of 30 wet and 35 dried samples were collected from six provinces: Chiang Rai, Chiang Mai, Mae Hong Son, Lampang, Lamphun, and Phayao. Bacterial diversity was significantly higher in the wet samples than in the dried samples. The dominant phyla were Firmicutes (92.7%), Proteobacteria (6.7%), Actinobacteriota (0.42%), and Bacteroidota (0.26%). The genus Bacillus (67%) was the most represented in all samples. Lactobacillus, Enterococcus, and Globicatella were enriched in the wet samples. Assessment of the SCFA-microbiota relationships revealed that high butyrate and propionate concentrations were associated with an increased Clostridiales abundance, and high acetate concentrations were associated with an increased Weissella abundance. Wet products contained more SCFAs, including acetate (P = 2.8e-08), propionate (P = 0.0044), butyrate (P = 0.0021), and isovalerate (P = 0.017), than the dried products. These results provide insight into SCFA-microbiota associations in Thua Nao, which may enable the development of starter cultures for SCFA-enriched Thua Nao production.


Assuntos
Alimentos Fermentados , Microbiota , Bactérias , Butiratos , Ácidos Graxos Voláteis/metabolismo , Alimentos Fermentados/microbiologia , Propionatos , Glycine max/microbiologia , Tailândia
16.
Sci Rep ; 13(1): 5380, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009816

RESUMO

Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Although S. suis serotype 2 strains are most prevalent worldwide, other serotypes are also occasionally detected. Herein, we investigated the genomes of two S. suis serotype 1 strains belonging to the clonal complex 1, which were recovered from a human patient and an asymptomatic pig, respectively. The genomes differed in pathotype, virulence-associated gene (VAG) profile, minimum core genome (MCG) typing, and antimicrobial resistance gene content. The porcine serotype 1 strain was sequence type (ST) 237 and MCG1, whereas the human serotype 1 strain was ST105 and MCG ungroupable. Both strains were susceptible to several antibiotics consisting of ß-lactams, fluoroquinolones, and chloramphenicol. Resistance to tetracycline, macrolides, and clindamycin was observed, which was attributed to the genes tet(O) and erm(B). Analysis of 99 VAG revealed Hhly3, NisK, NisR, salK/salR, srtG, virB4, and virD4 were absent in both serotype 1. However, the porcine strain lacked sadP (Streptococcal adhesin P), whereas the human strain harbored sadP1. Phylogenetic analysis revealed that human S. suis ST105 strains from Vietnam were genetically the closest to the human serotype 1 strain, whereas porcine S. suis ST11 strains from China and Thailand were genetically the closest to the porcine strain.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Humanos , Animais , Sorogrupo , Streptococcus suis/genética , Filogenia , Infecções Estreptocócicas/veterinária , Genômica , Antibacterianos/farmacologia
17.
Nucleic Acids Res ; 51(9): 4148-4177, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37094040

RESUMO

DNA sequence composition determines the topology and stability of G-quadruplexes (G4s). Bulged G-quadruplex structures (G4-Bs) are a subset of G4s characterized by 3D conformations with bulges. Current search algorithms fail to capture stable G4-B, making their genome-wide study infeasible. Here, we introduced a large family of computationally defined and experimentally verified potential G4-B forming sequences (pG4-BS). We found 478 263 pG4-BS regions that do not overlap 'canonical' G4-forming sequences in the human genome and are preferentially localized in transcription regulatory regions including R-loops and open chromatin. Over 90% of protein-coding genes contain pG4-BS in their promoter or gene body. We observed generally higher pG4-BS content in R-loops and their flanks, longer genes that are associated with brain tissue, immune and developmental processes. Also, the presence of pG4-BS on both template and non-template strands in promoters is associated with oncogenesis, cardiovascular disease and stemness. Our G4-BS models predicted G4-forming ability in vitro with 91.5% accuracy. Analysis of G4-seq and CUT&Tag data strongly supports the existence of G4-BS conformations genome-wide. We reconstructed a novel G4-B 3D structure located in the E2F8 promoter. This study defines a large family of G4-like sequences, offering new insights into the essential biological functions and potential future therapeutic uses of G4-B.


Assuntos
Quadruplex G , Humanos , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Regiões Promotoras Genéticas , Sequência de Bases
18.
Sci Rep ; 13(1): 4540, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941307

RESUMO

The market for the application of probiotics as a livestock health improvement supplement has increased in recent years. However, most of the available products are quality-controlled using low-resolution techniques and un-curated databases, resulting in misidentification and incorrect product labels. In this work, we deployed two workflows and compared results obtained by full-length 16S rRNA genes (16S) and metagenomic (Meta) data to investigate their reliability for the microbial composition of both liquid and solid forms of animal probiotic products using Oxford Nanopore long-read-only (without short-read). Our result revealed that 16S amplicon data permits to detect the bacterial microbiota even with the low abundance in the samples. Moreover, the 16S approach has the potential to provide species-level resolution for prokaryotes but not for assessing yeast communities. Whereas, Meta data has more power to recover of high-quality metagenome-assembled genomes that enables detailed exploration of both bacterial and yeast populations, as well as antimicrobial resistance genes, and functional genes in the population. Our findings clearly demonstrate that implementing these workflows with long-read-only monitoring could be applied to assessing the quality and safety of probiotic products for animals and evaluating the quality of probiotic products on the market. This would benefit the sustained growth of the livestock probiotic industry.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Probióticos , Animais , RNA Ribossômico 16S/genética , Saccharomyces cerevisiae/genética , Reprodutibilidade dos Testes , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
19.
Sci Rep ; 13(1): 5124, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991093

RESUMO

In this study, genomic and plasmid characteristics of Escherichia coli were determined with the aim of deducing how mcr genes may have spread on a colistin withdrawn pig farm. Whole genome hybrid sequencing was applied to six mcr-positive E. coli (MCRPE) strains isolated from pigs, a farmworker and wastewater collected between 2017 and 2019. Among these, mcr-1.1 genes were identified on IncI2 plasmids from a pig and wastewater, and on IncX4 from the human isolate, whereas mcr-3 genes were found on plasmids IncFII and IncHI2 in two porcine strains. The MCRPE isolates exhibited genotypic and phenotypic multidrug resistance (MDR) traits as well as heavy metal and antiseptic resistance genes. The mcr-1.1-IncI2 and IncX4 plasmids carried only colistin resistance genes. Whereas, the mcr-3.5-IncHI2 plasmid presented MDR region, with several mobile genetic elements. Despite the MCRPE strains belonged to different E. coli lineages, mcr-carrying plasmids with high similarities were found in isolates from pigs and wastewater recovered in different years. This study highlighted that several factors, including the resistomic profile of the host bacteria, co-selection via adjunct antibiotic resistance genes, antiseptics, and/or disinfectants, and plasmid-host fitness adaptation may encourage the maintenance of plasmids carrying mcr genes in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Animais , Suínos , Colistina/farmacologia , Águas Residuárias , Proteínas de Escherichia coli/genética , Fazendas , Antibacterianos/farmacologia , Plasmídeos/genética , Genômica , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
20.
Viruses ; 15(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992320

RESUMO

The emergence and availability of closely related clinical isolates of SARS-CoV-2 offers a unique opportunity to identify novel nonsynonymous mutations that may impact phenotype. Global sequencing efforts show that SARS-CoV-2 variants have emerged and then been replaced since the beginning of the pandemic, yet we have limited information regarding the breadth of variant-specific host responses. Using primary cell cultures and the K18-hACE2 mouse, we investigated the replication, innate immune response, and pathology of closely related, clinical variants circulating during the first wave of the pandemic. Mathematical modeling of the lung viral replication of four clinical isolates showed a dichotomy between two B.1. isolates with significantly faster and slower infected cell clearance rates, respectively. While isolates induced several common immune host responses to infection, one B.1 isolate was unique in the promotion of eosinophil-associated proteins IL-5 and CCL11. Moreover, its mortality rate was significantly slower. Lung microscopic histopathology suggested further phenotypic divergence among the five isolates showing three distinct sets of phenotypes: (i) consolidation, alveolar hemorrhage, and inflammation, (ii) interstitial inflammation/septal thickening and peribronchiolar/perivascular lymphoid cells, and (iii) consolidation, alveolar involvement, and endothelial hypertrophy/margination. Together these findings show divergence in the phenotypic outcomes of these clinical isolates and reveal the potential importance of nonsynonymous mutations in nsp2 and ORF8.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , Genótipo , Fenótipo , Inflamação , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA