Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 251, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137931

RESUMO

Variability in sea ice conditions, combined with strong couplings to the atmosphere and the ocean, lead to a broad range of complex sea ice dynamics. More in-situ measurements are needed to better identify the phenomena and mechanisms that govern sea ice growth, drift, and breakup. To this end, we have gathered a dataset of in-situ observations of sea ice drift and waves in ice. A total of 15 deployments were performed over a period of 5 years in both the Arctic and Antarctic, involving 72 instruments. These provide both GPS drift tracks, and measurements of waves in ice. The data can, in turn, be used for tuning sea ice drift models, investigating waves damping by sea ice, and helping calibrate other sea ice measurement techniques, such as satellite based observations.

2.
Micromachines (Basel) ; 11(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003618

RESUMO

The ability to separate and filter out microscopic objects lies at the core of many biomedical applications. However, a persistent problem is clogging, as biomaterials stick to the internal chip surface and limit device efficiency and liability. Here, we review an alternative technique that could solve these clogging issues. By leveraging tunable flow fields and particle inertia around special trilobite-shaped filtration units, we perform filtration of plastic beads by size and we demonstrate sorting of live cells. The separation and filtration are performed completely without signs of clogging. However, a clog-free operation relies on a controlled flow configuration to steer the particles and cells away from the filter structures. In this paper, we describe the tunable flow system for such an operation and we describe an optical setup enabling hydrodynamical interactions between particles and cells with the flow fields and direct interactions with the filter structures to be characterized. The optical setup is capable of measuring particle and flow velocities (by Particle Tracking Velocimetry (PTV), Micro Particle Image Velocimetry (µPIV), and streakline visualization) in meters per second necessary to avoid clogging. However, accurate measurements rely on strict calibration and validation procedures to be followed, and we devote a substantial portion of our paper to laying out such procedures. A comparison between µPIV data and a known flow profile is particularly valuable for assessing measurement accuracy, and this important validation has not been previously published by us. The detail level in our description of the flow configuration and optical system is sufficient to replicate the experiments. In the last part of the paper, we review an assessment of the device performance when handling rigid spheres and live cells. We deconvolute the influences of cell shape from effects of size and find that the shape has only a weak influence on device performance.

3.
Soft Matter ; 16(47): 10697-10706, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33094296

RESUMO

Yield stress fluids are widely used in industrial application to arrest dense solid particles, which can be studied by using a concentrated emulsion as a model fluid. We show in experiments that particle sedimentation in emulsions cannot be predicted by the classical criterion for spheres embedded in a yield stress fluid. Phase separation processes take place, where a liquid layer forms and particle sedimentation is enhanced by the emulsion drainage. In addition, emulsion drainage can be arrested or enhanced by the amount of particles embedded in the emulsion. A minimal mathematical model is developed and solved in numerical simulations to describe the emulsion drainage in the presence of particles, which favorably compares with the experimental stability diagram and the sedimentation dynamics.

4.
Eur Phys J E Soft Matter ; 36(2): 19, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23436050

RESUMO

Velocities and accelerations are measured and visualized in silicon microchannels using particle tracking velocimetry (PTV). Both pulsatile and stationary flows are generated in channels with different geometry. Distinct differences between flow regimes and geometries are shown. Flow separation occurred at Re = 84 for the channel with an expanded bifurcation shown by streamlines from long exposed images. Moving least squares are used to find the ensemble-averaged positions of the measured velocities from tracking. This is needed to find the local and convective accelerations.


Assuntos
Hidrodinâmica , Microtecnologia/métodos , Reologia/métodos , Silício , Aceleração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA