Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Virus Res ; 344: 199357, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508400

RESUMO

Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations.


Assuntos
Locos de Características Quantitativas , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Replicação Viral , Estudo de Associação Genômica Ampla , COVID-19/virologia , Proteínas com Motivo Tripartido/genética , Infecções por Coronavirus/virologia , Infecções por Coronavirus/genética , Modelos Animais de Doenças
2.
bioRxiv ; 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34013261

RESUMO

Sarbecovirus (CoV) infections, including Severe Acute Respiratory CoV (SARS-CoV) and SARS-CoV-2, are considerable human threats. Human GWAS studies have recently identified loci associated with variation in SARS-CoV-2 susceptibility. However, genetically tractable models that reproduce human CoV disease outcomes are needed to mechanistically evaluate genetic determinants of CoV susceptibility. We used the Collaborative Cross (CC) and human GWAS datasets to elucidate host susceptibility loci that regulate CoV infections and to identify host quantitative trait loci that modulate severe CoV and pan-CoV disease outcomes including a major disease regulating loci including CCR9. CCR9 ablation resulted in enhanced titer, weight loss, respiratory dysfunction, mortality, and inflammation, providing mechanistic support in mitigating protection from severe SARS-CoV-2 pathogenesis across species. This study represents a comprehensive analysis of susceptibility loci for an entire genus of human pathogens conducted, identifies a large collection of susceptibility loci and candidate genes that regulate multiple aspects type-specific and cross-CoV pathogenesis, and also validates the paradigm of using the CC platform to identify common cross-species susceptibility loci and genes for newly emerging and pre-epidemic viruses.

3.
PLoS One ; 14(7): e0220126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339932

RESUMO

Newly emerging viral pathogens pose a constant and unpredictable threat to human and animal health. Coronaviruses (CoVs) have a penchant for sudden emergence, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV) and most recently, swine acute diarrhea syndrome coronavirus (SADS-CoV). Small animal models of emerging viral pathogenesis are crucial to better understand the virus and host factors driving disease progression. However, rodent models are often criticized for their limited translatability to humans. The complete blood count is the most ordered clinical test in the United States serving as the cornerstone of clinical medicine and differential diagnosis. We recently generated a mouse model for MERS-CoV pathogenesis through the humanization of the orthologous entry receptor dipeptidyl peptidase 4 (DPP4). To increase the translatability of this model, we validated and established the use of an automated veterinary hematology analyzer (VetScan HM5) at biosafety level 3 for analysis of peripheral blood. MERS-CoV lung titer peaked 2 days post infection concurrent with lymphopenia and neutrophilia in peripheral blood, two phenomena also observed in MERS-CoV infection of humans. The fluctuations in leukocyte populations measured by Vetscan HM5 were corroborated by standard flow cytometry, thus confirming the utility of this approach. Comparing a sublethal and lethal dose of MERS-CoV in mice, analysis of daily blood draws demonstrates a dose dependent modulation of leukocytes. Major leukocyte populations were modulated before weight loss was observed. Importantly, neutrophil counts on 1dpi were predictive of disease severity with a lethal dose of MERS-CoV highlighting the predictive value of hematology in this model. Taken together, the inclusion of hematological measures in mouse models of emerging viral pathogenesis increases their translatability and should elevate the preclinical evaluation of MERS-CoV therapeutics and vaccines to better mirror the complexity of the human condition.


Assuntos
Monitoramento Biológico/métodos , Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Modelos Animais de Doenças , Testes Hematológicos , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Análise Química do Sangue/veterinária , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Progressão da Doença , Feminino , Testes Hematológicos/veterinária , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Células Vero
4.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747502

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. While bat, camel, and human DPP4 support MERS-CoV infection, several DPP4 orthologs, including mouse, ferret, hamster, and guinea pig DPP4, do not. Previous work revealed that glycosylation of mouse DPP4 plays a role in blocking MERS-CoV infection. Here, we tested whether glycosylation also acts as a determinant of permissivity for ferret, hamster, and guinea pig DPP4. We found that, while glycosylation plays an important role in these orthologs, additional sequence and structural determinants impact their ability to act as functional receptors for MERS-CoV. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and better inform our understanding of virus-receptor interactions associated with disease emergence and host susceptibility.IMPORTANCE MERS-CoV is a recently emerged zoonotic virus that is still circulating in the human population with an ∼35% mortality rate. With no available vaccines or therapeutics, the study of MERS-CoV pathogenesis is crucial for its control and prevention. However, in vivo studies are limited because MERS-CoV cannot infect wild-type mice due to incompatibilities between the virus spike and the mouse host cell receptor, mouse DPP4 (mDPP4). Specifically, mDPP4 has a nonconserved glycosylation site that acts as a barrier to MERS-CoV infection. Thus, one mouse model strategy has been to modify the mouse genome to remove this glycosylation site. Here, we investigated whether glycosylation acts as a barrier to infection for other nonpermissive small-animal species, namely, ferret, guinea pig, and hamster. Understanding the virus-receptor interactions for these DPP4 orthologs will help in the development of additional animal models while also revealing species-specific differences impacting MERS-CoV host range.


Assuntos
Infecções por Coronavirus/patologia , Dipeptidil Peptidase 4/metabolismo , Especificidade de Hospedeiro/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Sequência de Aminoácidos/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Cricetinae , Dipeptidil Peptidase 4/genética , Furões , Glicosilação , Cobaias , Células HEK293 , Humanos , Receptores Virais/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células Vero
5.
Virology ; 348(1): 242-52, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16430941

RESUMO

It has previously been shown in macaques that individual animals exhibit varying responses to challenge with the same strain of SIV. We attempted to elucidate these differences using functional genomics and correlate them to biological response. Unfractionated PBMC from three rhesus macaques were isolated, activated, and infected with SIVmac239. Interestingly, one of the three animals used for these experiments exhibited a completely unique response to infection relative to the other two. After repeated attempts to infect the PBMC from this animal, little or no infectivity was seen across the time points considered, and corresponding to this apparent lack of infection, few genes were seen to be differentially expressed when compared to mock-infected cells. For the remaining two animals, gene expression analysis showed that while they exhibited responses for the same groups of pathways, these responses included differences specific to the individual animal at the gene level. In instances where the patterns of differential gene expression differed between these animals, the genes being differentially expressed were associated with the same categories of biological process, mainly immune response and cell signaling. At the pathway level, these animals again exhibited similar responses that could be predicted based on the experimental conditions. Even in these expected results, the degree of response and the specific genes being regulated differed greatly from animal to animal. The differences in gene expression on an individual level have the potential to be used as markers in identification of animals suitable for lentiviral infection experiments. Our results highlight the importance of individual variation in response to viral challenge.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Leucócitos Mononucleares/fisiologia , Leucócitos Mononucleares/virologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Citometria de Fluxo , Imunidade/genética , Subpopulações de Linfócitos , Macaca mulatta , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA