Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurobiol ; 30(2): 155-169, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33707347

RESUMO

Stroke causes systemic immunosuppression. T lymphocytes are involved in infarct size in the early stages of stroke. However, the phenotypes of T lymphocytes and their functions in peripheral immune organs and the brain have not been well analyzed in the acute and chronic phases of stroke. Here, we investigated pathological phenotypic alterations in the systemic immune response, especially changes in T lymphocytes, from one day to six months after ischemic stroke in mice. Impairment in thymocyte numbers, development, proliferation, and apoptosis were observed for up to two weeks. The number of mature T cells in the spleen and blood decreased and showed reduced interferon-γ production. Increased numbers of CD4-CD8-CD3+ double-negative T cells were observed in the mouse brain during the early stages of stroke, whereas interleukin (IL)-10+Foxp3+ regulatory T lymphocytes increased from two weeks during the chronic phase. These phenotypes correlated with body weight and neurological severity scores. The recovery of T lymphocyte numbers and increases in IL-10+Foxp3+ regulatory T lymphocytes may be important for long-term neurological outcomes. Dynamic changes in T lymphocytes between the acute and chronic phases may play different roles in pathogenesis and recovery. This study provides fundamental information regarding the T lymphocyte alterations from the brain to the peripheral immune organs following stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA