Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 369: 128372, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423769

RESUMO

Magnetite can be considered as an iron-rich carrier particles that can be ionized into Fe2+ and Fe3+ which improves the activity and aggregation of anammox bacteria. Three samples from this carrier assisted granulation reactor with size groups including Flocs, FL (0-300 µm), Small Granules, SG (300-500 µm) and Large Granules, LG (500-1000 µm) were used in this study. It was observed that as the granule size increased, the iron-rich carrier content increased, and their active crystals improved the microbial cell density. Specific anammox activity (SAA) was 34.63 ± 5.02, 55.29 ± 5.14, and 63.81 ± 7.50 mg-N/g-VSS/d for FL, SG and LG, respectively. In addition, in heme c content of LG was 31.5 % higher than SG and 62.9 % higher than FL. An in-depth study into the extracellular polymeric substances (EPS) showed that the secretion intensity of essential proteins followed the order of FL < SG < LG in loosely bound EPS and FL > SG > LG in tightly bound EPS. Functional group analysis confirmed that the hydrophobic CN and NH stretching vibration band had almost 3.5 times higher transmittance intensity in LG than the other sizes and the corresponding ratio of α-helix/(ß sheet + random coil) in secondary derivative proteins analysis showed tightness in the protein structures of FL. The relative abundance of Brocadia Sinica increased from 0 % in FL to a high of 20.46 % in LG. This study aims to communicate the essence of in-depth EPS analysis beyond the usual EPS yield and major contents of proteins (PN) and polysaccharides (PS) analysis.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Esgotos/química , Matriz Extracelular de Substâncias Poliméricas/química , Óxido Ferroso-Férrico , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Proteínas/análise , Nitrogênio/análise
2.
Sci Total Environ ; 845: 157218, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810899

RESUMO

In this study, two lab-scale sequencing batch reactors each with an effective volume of 2.3 L were operated as C-AMX (no carrier addition) and M-AMX (magnetite carrier added) for 147 days with synthetic wastewater at an NLR range of 0.19-0.47 kgN/m3/d. The long-term effect of magnetite on the granulation and performance of anammox bacteria in terms of nitrogen removal and other essential parameters were confirmed. In phase I (1-24 days), M-AMX took approximately 12 days to obtain a nitrogen removal rate (NRR) above 80 % of the initial input nitrogen. Although free nitrous acid inhibited the reactor at a high concentration at the onset of phase III, the NRR of M-AMX recovered about 3.7 times faster than that of C-AMX. In addition, it was confirmed that the M-AMX granules had a dense and compact structure compared to C-AMX, and the presence of the carrier promoted the development of these resilient granules. While the measured microbial stress gradually increased in C-AMX reactor, a vice versa was observed in the M-AMX reactor as granulation proceeded. Compared to other alternative iron-based carrier particles, the stable crystal structure of magnetite as a carrier created a mechanism where filamentous bacteria groups were repelled from the granulation hence the microbial stress in the M-AMX in the final phase was 61.54 % lower than that in the C-AMX. The iron rich environment created by the magnetite addition led to Ignavibacteria, (a Feammox bacteria) increasing significantly in the M-AMX bioreactor.


Assuntos
Oxidação Anaeróbia da Amônia , Óxido Ferroso-Férrico , Anaerobiose , Bactérias , Reatores Biológicos/microbiologia , Ferro , Nitrogênio/química , Oxirredução , Esgotos/microbiologia
3.
Bioresour Technol ; 349: 126895, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217160

RESUMO

The cultivation of anaerobic ammonia oxidizing bacteria (anammox) has gained enormous awareness over the last few decades. Although numerous studies focus massively on successfully growing these anammox to different enrichment environments, in reality, the failure rates are somewhat comparable to the reported success rates. This study combines a variety of measurement techniques to observe and monitor the sequence of a bioreactor performance decline following elevated influent substrate concentration. After attaining stable substrate removal throughout a nitrogen loading rate (NLR) range of 0.691 to 1.669 kg-N·m-3·d-1, the performance of the lab-scale anammox-sequencing batch reactor (SBR) abruptly broke down as the NLR reached 2.01 kg-N·m-3·d-1. The gathered information showed that the increased NLR firstly caused a significant and unfavorable change in the free ammonia (FA) and free nitrous acid (FNA) concentration in the bioreactor. A subsequent drop in N2 production and a decline from a peak high of 0.381 to a low of 0.012 kg-N·kg-VSS-3·d-1 of the specific nitrogen removal rate (SNRR) led to an 82% absurd decline in microbial cellular energy production. Prior to these anammox switching to survival mode and secreting larger quantities (32% higher) of extracellular polymeric substances (EPS), the activity of syntrophic decomposers increased substantially leading to the internal production of excess CO2 in the bioreactor and thereby diverging the bioreactor pH to lower levels. The purposes of this study are to understand the reason an anammox process shows different signals during a decline phase and to enable immediate response to performance deterioration.


Assuntos
Oxidação Anaeróbia da Amônia , Análise de Causa Fundamental , Amônia , Reatores Biológicos/microbiologia , Nitrogênio/química , Oxirredução , Esgotos/microbiologia
4.
Toxicol In Vitro ; 59: 221-227, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31029783

RESUMO

Recently, the importance of inhalation toxicity assessment increased due to recent humidifier disinfectant-associated deaths in children. Benzalkonium chloride (BAC) is currently used as a cationic surfactant and germicide in food industry processing lines and as a hand sanitizer. Animal models are mainly used as a method of evaluating the inhalation toxicity of a hazardous substance, but that approach requires considerable amounts of time and cost. As a replacement for animal experiments, in vitro cell culture can be used to assess toxicity. However, such culture does not reflect the natural microenvironment of the lung, particularly its dynamic nature. In this study, we simulated normal breathing levels (tidal volume 10%, 0.2 Hz) through surface elongation of an elastic membrane in a dynamic culture system. The low-cost dynamic system provided easy control of breathing rate during lung cell culture. We assessed the toxicity using different concentrations of BAC (0, 2, 5, 10, 20, and 40 µg/mL) under static and dynamic culture conditions. Following 24 h of exposure to BAC, cellular metabolic activity, cell membrane integrity, interleukin-8 (IL-8) and reactive oxygen species (ROS) levels, and the total amount of protein in cells were analyzed. Our results showed that significant differences in cellular metabolic activity, as well as IL-8 and ROS profiles, between static and dynamic cell growth conditions, following BAC exposure.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Compostos de Benzalcônio/toxicidade , Conservantes Farmacêuticos/toxicidade , Células A549 , Células Epiteliais Alveolares/metabolismo , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Interleucina-8/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA