Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Commun ; 15(1): 10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169465

RESUMO

Tactile function is essential for human life as it enables us to recognize texture and respond to external stimuli, including potential threats with sharp objects that may result in punctures or lacerations. Severe skin damage caused by severe burns, skin cancer, chemical accidents, and industrial accidents damage the structure of the skin tissue as well as the nerve system, resulting in permanent tactile sensory dysfunction, which significantly impacts an individual's daily life. Here, we introduce a fully-implantable wireless powered tactile sensory system embedded artificial skin (WTSA), with stable operation, to restore permanently damaged tactile function and promote wound healing for regenerating severely damaged skin. The fabricated WTSA facilitates (i) replacement of severely damaged tactile sensory with broad biocompatibility, (ii) promoting of skin wound healing and regeneration through collagen and fibrin-based artificial skin (CFAS), and (iii) minimization of foreign body reaction via hydrogel coating on neural interface electrodes. Furthermore, the WTSA shows a stable operation as a sensory system as evidenced by the quantitative analysis of leg movement angle and electromyogram (EMG) signals in response to varying intensities of applied pressures.


Assuntos
Pele Artificial , Humanos , Biônica , Tato/fisiologia , Pele , Cicatrização , Órgãos dos Sentidos
3.
ACS Nano ; 17(21): 21443-21454, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37857269

RESUMO

Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 µm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37751467

RESUMO

The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.

5.
Bioact Mater ; 25: 796-806, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37056265

RESUMO

During the past decade, there has been extensive research toward the possibility of exploring magnesium and its alloys as biocompatible and biodegradable materials for implantable applications. Its practical medical application, however, has been limited to specific areas owing to rapid corrosion in the initial stage and the consequent complications. Surface coatings can significantly reduce the initial corrosion of Mg alloys, and several studies have been carried out to improve the adhesion strength of the coating to the surfaces of the alloys. The composition of hydroxyapatite (HAp) is very similar to that of bone tissue; it is one of the most commonly used coating materials for bone-related implants owing to favorable osseointegration post-implantation. In this study, HAp was coated on Mg using nanosecond laser coating, combining the advantages of chemical and physical treatments. Photothermal heat generated in the liquid precursor by the laser improved the adhesion of the coating through the precipitation and growth of HAp at the localized nanosecond laser focal area and increased the corrosion resistance and cell adhesion of Mg. The physical, crystallographic, and chemical bondings were analyzed to explore the mechanism through which the surface adhesion between Mg and the HAp coating layer increased. The applicability of the coating to Mg screws used for clinical devices and improvement in its corrosion property were confirmed. The liquid environment-based laser surface coating technique offers a simple and quick process that does not require any chemical ligands, and therefore, overcomes a potential obstacle in its clinical use.

7.
Biomater Res ; 26(1): 78, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514131

RESUMO

BACKGROUND: Cells in the human body experience different growth environments and conditions, such as compressive pressure and oxygen concentrations, depending on the type and location of the tissue. Thus, a culture device that emulates the environment inside the body is required to study cells outside the body. METHODS: A blanket-type cell culture device (Direct Contact Pressing: DCP) was fabricated with an alginate-based hydrogel. Changes in cell morphology due to DCP pressure were observed using a phase contrast microscope. The changes in the oxygen permeability and pressure according to the hydrogel concentration of DCP were analyzed. To compare the effects of DCP with normal or artificial hypoxic cultures, cells were divided based on the culture technique: normal culture, DCP culture device, and artificial hypoxic environment. Changes in phenotype, genes, and glycosaminoglycan amounts according to each environment were evaluated. Based on this, the mechanism of each culture environment on the intrinsic properties of conserving chondrocytes was suggested. RESULTS: Chondrocytes live under pressure from the surrounding collagen tissue and experience a hypoxic environment because collagen inhibits oxygen permeability. By culturing the chondrocytes in a DCP environment, the capability of DCP to produce a low-oxygen and physical pressure environment was verified. When human primary chondrocytes, which require pressure and a low-oxygen environment during culture to maintain their innate properties, were cultured using the hydrogel blanket, the original shapes and properties of the chondrocytes were maintained. The intrinsic properties could be recovered even in aged cells that had lost their original cell properties. CONCLUSIONS: A DCP culture method using a biomimetic hydrogel blanket provides cells with an adjustable physical pressure and a low-oxygen environment. Through this technique, we could maintain the original cellular phenotypes and intrinsic properties of human primary chondrocytes. The results of this study can be applied to other cells that require special pressure and oxygen concentration control to maintain their intrinsic properties. Additionally, this technique has the potential to be applied to the re-differentiation of cells that have lost their original properties.

8.
Biomater Res ; 26(1): 41, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064494

RESUMO

BACKGROUND: Although several studies on the Mg-Zn-Ca system have focused on alloy compositions that are restricted to solid solutions, the influence of the solid solution component of Ca on Mg-Zn alloys is unknown. Therefore, to broaden its utility in orthopedic applications, studies on the influence of the addition of Ca on the microstructural, mechanical, and corrosion properties of Mg-Zn alloys should be conducted. In this study, an in-depth investigation of the effect of Ca on the mechanical and bio-corrosion characteristics of the Mg-Zn alloy was performed for the optimization of a clinically approved Mg alloy system comprising Ca and Zn. METHODS: The Mg alloy was fabricated by gravitational melting of high purity Mg, Ca, and Zn metal grains under an Ar gas environment. The surface and cross-section were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to analyze their crystallographic structures. Electrochemical and immersion tests in Hank's balanced salt solution were used to analyze their corrosion resistance. Tensile testing was performed with universal testing equipment to investigate the impact of Ca addition. The examination of cytotoxicity for biometric determination was in line with the ISO10993 standard. RESULTS: In this study, the 0.1% Ca alloy had significantly retarded grain growth due to the formation of the tiny and well-dispersed Ca2Mg6Zn3 phase. In addition, the yield strength and elongation of the 0.1% Ca alloy were more than 50% greater than the 2% Zn alloy. The limited cell viability of the 0.3% Ca alloy could be attributed to its high corrosion rate, whereas the 0.1% Ca alloy demonstrated cell viability of greater than 80% during the entire experimental period. CONCLUSION: The effect of the addition of Ca on the microstructure, mechanical, and corrosion characteristics of Mg-Zn alloys was analyzed in this work. The findings imply that the Mg-Zn alloy system could be optimized by adding a small amount of Ca, improving mechanical properties while maintaining corrosion rate, thus opening the door to a wide range of applications in orthopedic surgery.

9.
ACS Nano ; 16(8): 12840-12851, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35950962

RESUMO

Synthetic biomaterials are used to overcome the limited quantity of human-derived biomaterials and to impart additional biofunctionality. Although numerous synthetic processes have been developed using various phases and methods, currently commonly used processes have some issues, such as a long process time and difficulties with extensive size control and high-concentration metal ion substitution to achieve additional functionality. Herein, we introduce a rapid synthesis method using a laser-induced hydrothermal process. Based on the thermal interaction between the laser pulses and titanium, which was used as a thermal reservoir, hydroxyapatite particles ranging from nanometer to micrometer scale could be synthesized in seconds. Further, this method enabled selective metal ion substitution into the apatite matrix with a controllable concentration. We calculated the maximum temperature achieved by laser irradiation at the surface of the thermal reservoir based on the validation of three simplification assumptions. Subsequent linear regression analysis showed that laser-induced hydrothermal synthesis follows an Arrhenius chemical reaction. Hydroxyapatite and Mg2+-, Sr2+-, and Zn2+-substituted apatite powders promoted bone cell attachment and proliferation ability due to ion release from the hydroxyapatite and the selective ion-substituted apatite powders, which had a low crystallinity and relatively high solubility. Laser-induced hydrothermal synthesis is expected to become a powerful ceramic material synthesis technology.


Assuntos
Apatitas , Durapatita , Humanos , Pós , Durapatita/farmacologia , Materiais Biocompatíveis , Lasers , Difração de Raios X
11.
Langmuir ; 38(26): 8003-8011, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35737666

RESUMO

Despite innovative advances in stent technology, restenosis remains a crucial issue for the clinical implantation of stents. Reactive oxygen species (ROS) are known to potentially accelerate re-endothelialization and lower the risk of restenosis by selectively controlling endothelial cells and smooth muscle cells. Recently, several studies have been conducted to develop biodegradable polymeric stents. As biodegradable polymers are not electrically conductive, double metallic layers are required to constitute a galvanic couple for ROS generation. Here, we report a new biodegradable hybrid material composed of a biodegradable polymer substrate and double anodic/cathodic metallic layers for enhancing re-endothelialization and suppressing restenosis. Pure Zn and Mg films (3 µm thick) were deposited onto poly-l-lactic acid (PLLA) substrates by DC magnetron sputtering, and a long-term immersion test using biodegradable hybrid materials was performed in phosphate-buffered solution (PBS) for 2 weeks. The concentrations of superoxide anions and hydrogen peroxide generated by the corrosion of biodegradable metallic films were monitored every 1 or 2 days. Both superoxide anions and hydrogen peroxide were seamlessly generated even after the complete consumption of the anodic Mg layer. It was confirmed that the superoxide anions and hydrogen peroxide were formed not only by the galvanic corrosion between the anode and cathode layers but also by the corrosion of a single Mg or Zn layer. The corrosion products of the Mg and Zn films in PBS were phosphate, oxide, or chloride of the biodegradable metals. Thus, it is concluded that ROS generation by the corrosion of PLLA-based hybrid materials can be sustained until the exhaustion of the cathode metal layer.


Assuntos
Células Endoteliais , Peróxido de Hidrogênio , Materiais Biocompatíveis , Corrosão , Teste de Materiais , Metais , Fosfatos , Polímeros , Espécies Reativas de Oxigênio , Stents , Superóxidos
12.
Small ; 18(24): e2200416, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35543974

RESUMO

Prompt and robust bone regeneration has been clinically achieved using supraphysiological doses of bone morphogenetic protein-2 (BMP-2) to overcome the short half-life and rapid clearance. However, uncontrolled burst release of exogenous BMP-2 causes severe complications such as heterotopic ossification and soft tissue inflammation. Therefore, numerous researches have focused on developing a new BMP-2 delivery system for a sustained release profile by immobilizing BMP-2 in various polymeric vehicles. Herein, to avoid denaturation of BMP-2 and enhance therapeutic action via localized delivery, a complex coacervate consisting of fucoidan, a marine-derived glycosaminoglycan, and poly-l-lysine (PLL) is fabricated. Superior BMP-2 binding ability and electrostatic interaction-driven engulfment enable facile and highly efficient microencapsulation of BMP-2. The microencapsulation ability of the coacervate significantly improves BMP-2 bioactivity and provides protection against antagonist and proteolysis, while allowing prolonged release. Moreover, BMP-2 containing coacervate is coated on conventional collagen sponges. The bioactivity and localized bone regenerating ability are confirmed through in vitro (human-derived stem cells), and in vivo (calvarial bone defect model) evaluations.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Osso e Ossos , Colágeno , Humanos , Osteogênese
13.
Bioact Mater ; 11: 118-129, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34938917

RESUMO

Developing a universal culture platform that manipulates cell fate is one of the most important tasks in the investigation of the role of the cellular microenvironment. This study focuses on the application of topographical and electrical field stimuli to human myogenic precursor cell (hMPC) cultures to assess the influences of the adherent direction, proliferation, and differentiation, and induce preconditioning-induced therapeutic benefits. First, a topographical surface of commercially available culture dishes was achieved by femtosecond laser texturing. The detachable biphasic electrical current system was then applied to the hMPCs cultured on laser-textured culture dishes. Laser-textured topographies were remarkably effective in inducing the assembly of hMPC myotubes by enhancing the orientation of adherent hMPCs compared with flat surfaces. Furthermore, electrical field stimulation through laser-textured topographies was found to promote the expression of myogenic regulatory factors compared with nonstimulated cells. As such, we successfully demonstrated that the combined stimulation of topographical and electrical cues could effectively enhance the myogenic maturation of hMPCs in a surface spatial and electrical field-dependent manner, thus providing the basis for therapeutic strategies.

14.
J Mater Chem B ; 9(27): 5560-5571, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34169302

RESUMO

The utilization of cell-manipulating techniques reveals information about biological behaviors suited to address a wide range of questions in the field of life sciences. Here, we introduced an on/off switchable physical stimuli technique that offers precise stimuli for reversible cell patterning to allow regulation of the future direction of adherent cellular behavior by leveraging enzymatically degradable alginate hydrogels with defined chemistry and topography. As a proof of concept, targeted muscle cells adherent to TCP exhibited a reshaped structure when the hydrogel-based physical stimuli were applied. This simple tool offers easy manipulation of adherent cells to reshape their morphology and to influence future direction depending on the characteristics of the hydrogel without limitations of time and space. The findings from this study are broadly applicable to investigations into the relationships between cells and physiological extracellular matrix environments as well as has potential to open new horizons for regenerative medicine with manipulated cells.


Assuntos
Dimetilpolisiloxanos/farmacologia , Matriz Extracelular/química , Hidrogéis/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/química , Hidrogéis/síntese química , Hidrogéis/química , Camundongos , Tamanho da Partícula , Propriedades de Superfície
15.
Bioact Mater ; 6(10): 3608-3619, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33869901

RESUMO

Hydroxyapatite, an essential mineral in human bones composed mainly of calcium and phosphorus, is widely used to coat bone graft and implant surfaces for enhanced biocompatibility and bone formation. For a strong implant-bone bond, the bone-forming cells must not only adhere to the implant surface but also move to the surface requiring bone formation. However, strong adhesion tends to inhibit cell migration on the surface of hydroxyapatite. Herein, a cell migration highway pattern that can promote cell migration was prepared using a nanosecond laser on hydroxyapatite coating. The developed surface promoted bone-forming cell movement compared with the unpatterned hydroxyapatite surface, and the cell adhesion and movement speed could be controlled by adjusting the pattern width. Live-cell microscopy, cell tracking, and serum protein analysis revealed the fundamental principle of this phenomenon. These findings are applicable to hydroxyapatite-coated biomaterials and can be implemented easily by laser patterning without complicated processes. The cell migration highway can promote and control cell movement while maintaining the existing advantages of hydroxyapatite coatings. Furthermore, it can be applied to the surface treatment of not only implant materials directly bonded to bone but also various implanted biomaterials implanted that require cell movement control.

16.
ACS Appl Mater Interfaces ; 13(15): 17276-17288, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33830733

RESUMO

Mesenchymal stromal cells (MSCs) secreting multiple growth factors and immunomodulatory cytokines are promising for regenerative medicine. To further enhance their secretory activity, efforts have emerged to tether nanosized carriers of secretory stimuli, named nanostimulators, to the MSC surface by forming nonchemical bonds. Despite some successes, there is a great need to improve the retention of nanostimulators during transport through a syringe needle, where high shear stress exerted on the cell surface separates them. To this end, we hypothesize that poly(lactic-co-glycolic acid)-block-hyaluronic acid (PLGA-HA) conjugated with integrin-binding RGD peptides, denoted PLGA-HA-RGD, can form nanostimulators that remain on the cell surface stably during the injection. The resulting HA-CD44 and RGD-integrin bonds would synergistically increase the adhesion strength of nanostimulators. Interestingly, nanostimulators prepared with PLGA-HA-RGD show 3- to 6-fold higher retention than those made with PLGA-HA. Therefore, the PLGA-HA-RGD nanostimulators induced MSCs to secrete 1.5-fold higher vascular endothelial growth factors and a 1.2-fold higher tissue inhibitor of matrix metalloproteinase-1 as compared to PLGA-HA nanostimulators. Consequently, MSCs tethered with PLGA-HA-RGD nanostimulators served to stimulate endothelial cell activities to form a blood vessel-like endothelial lumen with increased length and number of junctions. The nanostimulator design strategy would also be broadly applicable to regulate, protect, and home a broad array of therapeutic or immune cells by tethering carriers with bioactive molecules of interest.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Nanotecnologia/métodos , Comunicação Parácrina/efeitos dos fármacos , Resistência ao Cisalhamento , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptores de Hialuronatos/química , Ácido Hialurônico/química , Injeções , Oligopeptídeos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Estresse Mecânico
17.
Adv Mater ; 33(20): e2007346, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33739558

RESUMO

Soft neuroprosthetics that monitor signals from sensory neurons and deliver motor information can potentially replace damaged nerves. However, achieving long-term stability of devices interfacing peripheral nerves is challenging, since dynamic mechanical deformations in peripheral nerves cause material degradation in devices. Here, a durable and fatigue-resistant soft neuroprosthetic device is reported for bidirectional signaling on peripheral nerves. The neuroprosthetic device is made of a nanocomposite of gold nanoshell (AuNS)-coated silver (Ag) flakes dispersed in a tough, stretchable, and self-healing polymer (SHP). The dynamic self-healing property of the nanocomposite allows the percolation network of AuNS-coated flakes to rebuild after degradation. Therefore, its degraded electrical and mechanical performance by repetitive, irregular, and intense deformations at the device-nerve interface can be spontaneously self-recovered. When the device is implanted on a rat sciatic nerve, stable bidirectional signaling is obtained for over 5 weeks. Neural signals collected from a live walking rat using these neuroprosthetics are analyzed by a deep neural network to predict the joint position precisely. This result demonstrates that durable soft neuroprosthetics can facilitate collection and analysis of large-sized in vivo data for solving challenges in neurological disorders.


Assuntos
Nervo Isquiático , Animais , Eletrodos Implantados , Nanocompostos , Polímeros , Ratos
18.
Biomedicines ; 8(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198404

RESUMO

We aimed to design and manufacture a transporter capable of delivering small interfering RNAs (siRNAs) into the skin without causing any damage. ß-glucans are unique chiral polysaccharides with well-defined immunological properties and supramolecular wrapping ability. However, the chiral properties of these polymers have hardly been applied in drug delivery systems. In this study, ß-glucan nanoparticles were designed and manufactured to deliver genetic material to the target cells. The ß-glucan molecules were self-assembled with an siRNA into nanoparticles of 300-400 nm in diameter via a conformational transition process, in order to construct a gene delivery system. The assembled gene nanocarriers were associated with high gene-loading ability. The expression and efficiency of siRNA were verified after its delivery via ß-glucan. Our results provide evidence that ß-glucan nanoparticles can be effectively used to deliver siRNA into the cells.

19.
Sci Rep ; 10(1): 17454, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060752

RESUMO

While a clear operating field during endoscopy is essential for accurate diagnosis and effective surgery, fogging or biofouling of the lens can cause loss of visibility during these procedures. Conventional cleaning methods such as the use of an irrigation unit, anti-fogging surfactant, or particle-based porous coatings infused with lubricants have been used but proven insufficient to prevent loss of visibility. Herein, a mechanically robust anti-fogging and anti-biofouling endoscope lens was developed by forming a lubricant-infused directly engraved nano-/micro-structured surface (LIDENS) on the lens. This structure was directly engraved onto the lens via line-by-line ablation with a femtosecond laser. This directly engraved nano/microstructure provides LIDENS lenses with superior mechanical robustness compared to lenses with conventional particle-based coatings, enabling the maintenance of clear visibility throughout typical procedures. The LIDENS lens was chemically modified with a fluorinated self-assembled monolayer (F-SAM) followed by infusion of medical-grade perfluorocarbon lubricants. This provides the lens with high transparency (> 70%) along with superior and long-lasting repellency towards various liquids. This excellent liquid repellency was also shown to be maintained during blood dipping, spraying, and droplet condensation experiments. We believe that endoscopic lenses with the LIDENS offer excellent benefits to endoscopic surgery by securing clear visibility for stable operation.

20.
Acta Biomater ; 116: 138-148, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32890750

RESUMO

Posterior capsular opacification (PCO) is the most common complication of cataract surgery. PCO is due to the proliferation, migration, and epithelial-to-mesenchymal transition of the residual lens epithelial cells (LECs) within the lens capsule. As surface topography influences cellular response, we investigated the effect of modulating the dimensions of periodic nano-textured patterns on the surface of an intraocular lens material to regulate lens epithelial cell functions such as cell adhesion, migration, orientation, and proliferation. Patterned poly(HEMA) samples were prepared by a femtosecond laser microfabrication, and the behaviors of human B-3 LECs were observed on groove/ridge patterns with widths varying from 5 to 40 µm. In the presence of ridge and groove patterns, the adherent cells elongated along the direction of the patterns, and f-actin of the cells was spread to a lesser extent on the nano-textured groove surfaces. Both single and collective cell migrations were significantly inhibited in the perpendicular direction of the patterns on the nano-textured micro-patterned samples. We also fabricated the patterns on the curved surface of a commercially available intraocular lens for in vivo evaluation. In vivo results showed that a patterned IOL could help suppress the progression of PCO by inhibiting cell migration from the edge to the center of the IOL. Our reports demonstrate that nano- and microscale topographical patterns on a biomaterial surface can regulate cellular behavior when it is implanted into animals.


Assuntos
Opacificação da Cápsula , Cápsula do Cristalino , Lentes Intraoculares , Animais , Materiais Biocompatíveis/farmacologia , Movimento Celular , Células Epiteliais , Humanos , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA