Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Biomed Pharmacother ; 174: 116484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565058

RESUMO

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aß1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aß1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 µM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aß, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Peptídeos beta-Amiloides , Benzotiazóis , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Benzotiazóis/farmacologia , Benzotiazóis/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Peptídeos beta-Amiloides/metabolismo , Acetilcolinesterase/metabolismo , Camundongos , Masculino , Humanos , Piperazinas/farmacologia , Piperazinas/química , Escopolamina , Piperazina/farmacologia , Piperazina/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Simulação de Dinâmica Molecular , Simulação por Computador , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos
2.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36558966

RESUMO

Inflammatory bowel diseases (IBD) are digestive tract disorders that involve chronic inflammation with frequent recurrences. This study aimed to evaluate the efficacy of two novel histone deacetylase 8 (HDAC8) inhibitors, namely, SPA3052 and SPA3074, against dextran sulfate sodium (DSS)-induced experimental colitis. Male C57BL/6N mice were subjected to two cycles of 1.5% DSS followed by treatment with suberoylanilide hydroxamic acid (SAHA), SPA3052, or SPA3074 for 14 days. Our results showed that SPA3074 administration increased (>50%) the expression of occludin, a tight junction protein, which was significantly decreased (>100%) after DSS treatment. Moreover, SPA3074 upregulated suppressor of cytokine signaling 1 (SOCS1) protein expression, which is known to be a key suppressor of T-helper cell differentiation and pro-inflammatory cytokines expression. Furthermore, we observed a decrease in SOCS1-associated Akt phosphorylation and an increase in lower extracellular signal-regulated kinase 1 and 2 phosphorylation, which contributed to lower nuclear factor-kappa B activation. Th2 effector cytokines, especially interleukin-13, were also downregulated by SPA3074 treatment. This study suggests that HDAC8 might be a promising novel target for the development of IBD treatments and that the novel HDAC8 inhibitor SPA3074 is a new candidate for IBD therapeutics.

3.
J Enzyme Inhib Med Chem ; 37(1): 2133-2146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35920284

RESUMO

p21-Activated kinase 4 (PAK4), one of the serine/threonine kinases activated by Rho-family GTPases, has been widely studied as an oncogenic protein that is overexpressed in many types of cancers. In our recent study, PAK4 upregulation was observed in mice exhibiting hepatic ischaemia-reperfusion (I/R) and in liver transplantation patients. Liver I/R injury was also attenuated in Pak4 KO mice. Herein, we report a novel series of pyrazolo[3,4-d]pyrimidine derivatives of type I ½ PAK4 inhibitors. The most potent compound SPA7012 was evaluated to determine the pharmacological potential of PAK4 inhibitor in I/R injury in mice. Mice with I/R injury showed typical patterns of liver damage, as demonstrated by increases in serum levels of aminotransferases and proinflammatory cytokines, hepatocellular necrosis and apoptosis, and inflammatory cell infiltration, relative to sham mice. Conversely, intraperitoneal administration of SPA7012 dramatically attenuated biochemical and histopathologic changes. Mechanistically, stabilisation of nuclear factor-erythroid 2-related factor 2 (Nrf2), a master regulator of anti-oxidative response, was observed following SPA7012 treatment. SPA7012 treatment in primary hepatocytes also attenuated hypoxia-reoxygenation-induced apoptotic cell death and inflammation. Together, these results provide experimental evidence supporting the use of PAK4 inhibitors for alleviation of I/R-induced liver damage.


Assuntos
Traumatismo por Reperfusão , Quinases Ativadas por p21 , Animais , Apoptose , Fígado/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases , Pirimidinas/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Quinases Ativadas por p21/metabolismo
4.
Br J Pharmacol ; 179(5): 1033-1048, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34610141

RESUMO

BACKGROUND AND PURPOSE: Recently, isoflavone derivatives have been shown to have neuroprotective effects against neurological disorders. For instance, genistein attenuated the neuroinflammation and amyloid-ß accumulation in Alzheimer's disease animal models, suggesting the potential for use to prevent and treat Alzheimer's disease. EXPERIMENTAL APPROACH: Here, 50 compounds, including isoflavone derivatives, were constructed and screened for the inhibitory effects on amyloid-ß42 fibrilization and oligomerization using the high-throughput screening formats of thioflavin T assay and multimer detection system, respectively. The potential neuroprotective effect of t3-(4-hydroxyphenyl)-2H-chromen-7-ol (SPA1413), also known as dehydroequol, idronoxil or phenoxodiol, was evaluated in cells and in 5xFAD (B6SJL) transgenic mouse, a model of Alzheimer's disease. KEY RESULTS: SPA1413 had a potent inhibitory action on both amyloid-ß fibrilization and oligomerization. In the cellular assay, SPA1413 prevented amyloid-ß-induced cytotoxicity and reduced neuroinflammation. Remarkably, the oral administration of SPA1413 ameliorated cognitive impairment, decreased amyloid-ß plaques and activated microglia in the brain of 5xFAD (B6SJL) transgenic mouse. CONCLUSION AND IMPLICATIONS: Our results strongly support the repurposing of SPA1413, which has already received fast-track status from the US Food and Drug Administration (FDA) for cancer treatment, for the treatment of Alzheimer's disease due to its potent anti-amyloidogenic and anti-neuroinflammatory actions.


Assuntos
Doença de Alzheimer , Isoflavonas , Fármacos Neuroprotetores , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Isoflavonas/farmacologia , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Placa Amiloide
5.
J Enzyme Inhib Med Chem ; 36(1): 954-963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33947294

RESUMO

Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Animais , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Oxid Med Cell Longev ; 2021: 8839479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747350

RESUMO

Black berry (Syzygium cumini) fruit is useful in curing diabetic complications; however, its role in diabetes-induced cardiomyopathy is not yet known. In this study, we investigated the regulation of gelatinase-B (MMP-9) by S. cumini methanol seed extract (MSE) in diabetic cardiomyopathy using real-time PCR, RT-PCR, immunocytochemistry, gel diffusion assay, and substrate zymography. The regulatory effects of MSE on NF-κB, TNF-α, and IL-6 were also examined. Identification and estimation of polyphenol constituents present in S. cumini extract were carried out using reverse-phase HPLC. Further, in silico docking studies of identified polyphenols with gelatinase-B were performed to elucidate molecular level interaction in the active site of gelatinase-B. Docking studies showed strong interaction of S. cumini polyphenols with gelatinase-B. Our findings indicate that MSE significantly suppresses gelatinase-B expression and activity in high-glucose- (HG-) stimulated cardiomyopathy. Further, HG-induced activation of NF-κB, TNF-α, and IL-6 was also remarkably reduced by MSE. Our results suggest that S. cumini MSE may be useful as an effective functional food and dietary supplement to regulate HG-induced cardiac stress through gelatinase.


Assuntos
Anti-Inflamatórios/farmacologia , Hiperglicemia/patologia , Metaloproteinase 9 da Matriz/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Sementes/química , Syzygium/química , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose , Hiperglicemia/genética , Inflamação/patologia , Interleucina-6/metabolismo , Metaloproteinase 9 da Matriz/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Especificidade por Substrato/efeitos dos fármacos , Termodinâmica , Fator de Necrose Tumoral alfa/metabolismo
7.
Brief Bioinform ; 22(2): 1346-1360, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33386025

RESUMO

The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic. Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, whichare crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection. Virtual screening of 75 FDA-approved potential antiviral drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target proteins. Further, the molecular interactions determined by molecular dynamics simulation revealed that among the 75 drug molecules, catechin can effectively bind to 3CLpro, CTSL, RBD of S protein, NSP6 and nucleocapsid protein. It is more conveniently involved in key molecular interactions, showing binding free energy (ΔGbind) in the range of -5.09 kcal/mol (CTSL) to -26.09 kcal/mol (NSP6). At the binding pocket, catechin is majorly stabilized by the hydrophobic interactions, displays ΔEvdW values: -7.59 to -37.39 kcal/mol. Thus, the structural insights of better binding affinity and favorable molecular interaction of catechin toward multiple target proteins signify that catechin can be potentially explored as a multi-targeted agent against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Catequina/farmacologia , Polifenóis/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Catequina/química , Catequina/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Polifenóis/uso terapêutico
8.
Chem Pharm Bull (Tokyo) ; 69(1): 99-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390527

RESUMO

A set of isoflavononid and flavonoid analogs was prepared and evaluated for estrogen receptor α (ERα) and ERß transactivation and anti-neuroinflammatory activities. Structure-activity relationship (SAR) study of naturally occurring phytoestrogens, their metabolites, and related isoflavone analogs revealed the importance of the C-ring of isoflavonoids for ER activity and selectivity. Docking study suggested putative binding modes of daidzein 2 and dehydroequol 8 in the active site of ERα and ERß, and provided an understanding of the promising activity and selectivity of dehydroequol 8. Among the tested compounds, equol 7 and dehydroequol 8 were the most potent ERα/ß agonists with ERß selectivity and neuroprotective activity. This study provides knowledge on the SAR of isoflavonoids for further development of potent and selective ER agonists with neuroprotective potential.


Assuntos
Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Fármacos Neuroprotetores/farmacologia , Fitoestrógenos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Fitoestrógenos/síntese química , Fitoestrógenos/química , Relação Estrutura-Atividade
9.
Biochem Pharmacol ; 183: 114312, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130126

RESUMO

Cholestasis is a pathological condition involving blockage of bile flow that results in hepatotoxicity, inflammation, and fibrosis. Although recent studies have shown that histone deacetylases (HDACs) are involved in the progression of fibrosis in various organs, the role of HDAC8 on liver fibrosis has until now remained unexplored. This study presents a newly-synthesized, selective HDAC8 inhibitor SPA3014 composed of a vinyl disulfide-sulfoxide core, and evaluates its therapeutic efficacy against cholestatic liver injury and fibrosis in bile duct-ligated (BDL) mice. We first observed the increase in HDAC8 protein levels in mice with BDL and patients with cholestatic liver disease. Mice with BDL that were pretreated with SPA3014 had lower liver damage and fibrosis, based on gross examination, histopathologic findings, and biochemical analyses, than did vehicle-treated mice. Studies with LX-2 human hepatic stellate cells showed that SPA3014 exerted protective effects by inhibiting TGF-ß-mediated activation of MAPK-Smad2/3 and JAK2-STAT3 pathways and by upregulating PPARγ expression. Overall, these results strongly suggest that HDAC8 inhibition constitutes a new therapeutic strategy for treatment of cholestatic liver injury.


Assuntos
Colestase/tratamento farmacológico , Colestase/enzimologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/enzimologia , Animais , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Int J Mol Sci ; 21(21)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113810

RESUMO

Bruton's tyrosine kinase (BTK) is an attractive target for treating patients with B cell malignancies and autoimmune diseases. Many BTK inhibitors have been identified; however, like other kinase inhibitors, they lack diversity in their core structures. Therefore, it is important to secure a novel scaffold that occupies the adenine-binding site of BTK. We screened an in-house library of natural products and their analogs via a biochemical assay to identify a novel scaffold for targeting BTK. A pyranochromenone scaffold, derived from a natural active component decursin, was found to be effective at targeting BTK and was selected for further optimization. A series of pyranochromenone analogs was synthesized through the modification of pyranochromenone at the C7 position. Pyranochromenone compounds with an electrophilic warhead exhibited promising BTK inhibitory activity, with IC50 values in the range of 0.5-0.9 µM. A docking study of the representative compound 8 provided a reasonable explanation for compound activity. Compound 8 demonstrated good selectivity over other associated kinases and decreased the production of proinflammatory cytokines in THP cells. Moreover, compound 8 presented significant in vivo efficacy in a murine model of collagen-induced arthritis.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antirreumáticos/farmacologia , Benzopiranos/farmacologia , Produtos Biológicos/farmacologia , Butiratos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Antirreumáticos/química , Artrite Experimental/prevenção & controle , Benzopiranos/química , Produtos Biológicos/química , Butiratos/química , Humanos , Masculino , Camundongos Endogâmicos DBA , Simulação de Acoplamento Molecular , Estrutura Molecular , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células THP-1
11.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126415

RESUMO

As a member of the tyrosine protein kinase Tec (TEC) family, Bruton's tyrosine kinase (BTK) is considered a promising therapeutic target due to its crucial roles in the B cell receptor (BCR) signaling pathway. Although many types of BTK inhibitors have been reported, there is an unmet need to achieve selective BTK inhibitors to reduce side effects. To obtain BTK selectivity and efficacy, we designed a novel series of type II BTK inhibitors which can occupy the allosteric pocket induced by the DFG-out conformation and introduced an electrophilic warhead for targeting Cys481. In this article, we have described the structure-activity relationships (SARs) leading to a novel series of potent and selective piperazine and tetrahydroisoquinoline linked 5-phenoxy-2-aminopyridine irreversible inhibitors of BTK. Compound 18g showed good potency and selectivity, and its biological activity was evaluated in hematological tumor cell lines. The in vivo efficacy of 18g was also tested in a Raji xenograft mouse model, and it significantly reduced tumor size, with 46.8% inhibition compared with vehicle. Therefore, we have presented the novel, potent, and selective irreversible inhibitor 18g as a type II BTK inhibitor.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Aminopiridinas/química , Descoberta de Drogas , Linfoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Linfoma/enzimologia , Linfoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Korean J Physiol Pharmacol ; 23(1): 47-54, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30627009

RESUMO

Estrogen withdrawal in post-menopausal women leads to overactivation of osteoclasts, which contributes to the development of osteoporosis. Inflammatory cytokines are known as one of mechanisms of osteoclast activation after estrogen deficiency. SPA0355 is a thiourea derivative that has been investigated for its antioxidant and anti-inflammatory activities. However, its efficacy in bone resorption has not been previously investigated. The aim of this study was to investigate the impact of SPA0355 on the development of osteoporosis and to explore its mode of action. In vitro experiments showed that SPA0355 inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in primary bone marrow-derived macrophages. This effect appears to be independent of estrogen receptor activation as ICI 180,782 failed to abrogate its effects on osteoclasts. Further signaling studies revealed that SPA0355 suppressed activation of the MAPKs, Akt, and NF-κB pathways. SPA0355 also increased osteoblastic differentiation, as evidenced by its effects on alkaline phosphatase activity and mineralization nodule formation. Intraperitoneal administration of SPA0355 to ovariectomized mice prevented bone loss, as verified by three-dimensional images and bone morphometric parameters derived from µCT analysis. Noticeably, SPA0355 did not show hepatotoxicity and nephrotoxicity and also had little effect on hematological parameters. Taken together, the results indicate that SPA0355 may protect against bone loss in ovariectomized mice by stimulation of osteoblast differentiation and by inhibition of osteoclast resorption. Therefore, SPA0355 is a safe and potential candidate for management of postmenopausal osteoporosis.

13.
Int J Mol Sci ; 19(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287791

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are important targets in metabolic diseases including obesity, metabolic syndrome, diabetes, and non-alcoholic fatty liver disease. Recently, they have been highlighted as attractive targets for the treatment of cardiovascular diseases and chronic myeloid leukemia. The PPAR agonist structure is consists of a polar head, a hydrophobic tail, and a linker. Each part interacts with PPARs through hydrogen bonds or hydrophobic interactions to stabilize target protein conformation, thus increasing its activity. Acidic head is essential for PPAR agonist activity. The aromatic linker plays an important role in making hydrophobic interactions with PPAR as well as adjusting the head-to-tail distance and conformation of the whole molecule. By tuning the scaffold of compound, the whole molecule could fit into the ligand-binding domain to achieve proper binding mode. We modified indol-3-ylacetic acid scaffold to (indol-1-ylmethyl)benzoic acid, whereas 2,4-dichloroanilide was fixed as the hydrophobic tail. We designed, synthesized, and assayed the in vitro activity of novel indole compounds with (indol-1-ylmethyl)benzoic acid scaffold. Compound 12 was a more potent PPAR-γ agonist than pioglitazone and our previous hit compound. Molecular docking studies may suggest the binding between compound 12 and PPAR-γ, rationalizing its high activity.


Assuntos
Indóis/química , PPAR gama/agonistas , Relação Quantitativa Estrutura-Atividade , Animais , Benzoatos/química , Linhagem Celular , Chlorocebus aethiops , Indóis/síntese química , Indóis/farmacologia , Simulação de Acoplamento Molecular , PPAR gama/química , PPAR gama/metabolismo , Ligação Proteica
14.
Bioorg Med Chem ; 25(14): 3614-3622, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28529042

RESUMO

A strong relationship between abnormal functions of Aurora kinases and tumorigenesis has been reported for decades. Consequently, Aurora kinases serve as potential targets for anticancer agents. Here, we identified aminobenzothiazole derivatives as novel inhibitors of Aurora B kinase through bioisosteric replacement of the previous inhibitors, aminobenzoxazole derivatives. Most of the urea-linked aminobenzothiazole derivatives showed potent and selective inhibitory activity against Aurora B kinase over Aurora A kinase. Molecular modeling indicated that compound 15g bound well to the active site of Aurora B kinase and formed the essential hydrogen bonds. The potent compounds, 15g and 15k, were selected, and their biological effects were evaluated using HeLa cell lines. It was found that these compounds inhibited the phosphorylation of histone H3 at Ser10 and induced G2/M cell cycle arrest. We suggest that the reported compounds have the potential to be further developed as anticancer therapeutics.


Assuntos
Antineoplásicos/química , Aurora Quinase B/antagonistas & inibidores , Benzotiazóis/química , Morfolinas/química , Inibidores de Proteínas Quinases/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Benzotiazóis/síntese química , Benzotiazóis/farmacologia , Benzotiazóis/toxicidade , Sítios de Ligação , Domínio Catalítico , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Histonas/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Morfolinas/síntese química , Morfolinas/toxicidade , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
15.
Sci Rep ; 7: 45951, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378765

RESUMO

Colon cancer is one of the most common cancers. In this study, we isolated a lignan [(-)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol, DFS] from Alnus japonica (Betulaceae) and investigated its biological activity and mechanism of action on colon cancer. DFS reduced the viability of colon cancer cells and induced cell cycle arrest. DFS also suppressed ß-catenin nuclear translocation and ß-catenin target gene expression through a reduction in FoxM1 protein. To assess the mechanism of the action of DFS, we investigated the effect of DFS on endogenous and exogenous FoxM1 protein degradation in colon cancer cells. DFS-induced FoxM1 protein degradation was suppressed by lysosomal inhibitors, chloroquine and bafilomycin A1, but not by knock-down of proteasomal proteins. The mechanism of DFS for FoxM1 degradation is lysosomal dependent, which was not reported before. Furthermore, we found that FoxM1 degradation was partially lysosomal-dependent under normal conditions. These observations indicate that DFS from A. japonica suppresses colon cancer cell proliferation by reducing ß-catenin nuclear translocation. DFS induces lysosomal-dependent FoxM1 protein degradation. This is the first report on the lysosomal degradation of FoxM1 by a small molecule. DFS may be useful in treating cancers that feature the elevated expression of FoxM1.


Assuntos
Proteína Forkhead Box M1/metabolismo , Lignanas/farmacologia , Lisossomos/metabolismo , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Alnus/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Lignanas/química , Camundongos Endogâmicos C57BL , Estrutura Molecular , Proteólise/efeitos dos fármacos , beta Catenina/genética
16.
Arch Pharm Res ; 40(4): 509-517, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28258481

RESUMO

Pancreatic cancer is one of the leading causes of cancer, and it has the lowest 5-year survival rates. It is necessary to develop more potent anti-pancreatic cancer drugs to overcome the fast metastasis and resistance to surgery, radiotherapy, chemotherapy, and combinations of these. We have identified several diarylheptanoids as anti-pancreatic cancer agents from Alpinia officinarum (lesser galangal) and Alnus japonica. These diarylheptanoids suppressed cell proliferation and induced the cell cycle arrest of pancreatic cancer cells (PANC-1). Among them, the most potent compounds 1 and 7 inhibited the shh-Gli-FoxM1 pathway and their target gene expression in PANC-1 cells. Furthermore, they suppressed the expression of the cell cycle associated genes that were rescued by the overexpression of exogenous FoxM1. Taken together, (E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (1) from Alpinia officinarum (lesser galangal) and platyphyllenone (7) from Alnus japonica inhibit PANC-1 cell proliferation by suppressing the shh-Gli-FoxM1 pathway, and they can be potential candidates for anti-pancreatic cancer drug development.


Assuntos
Alpinia/química , Antineoplásicos Fitogênicos/farmacologia , Diarileptanoides/farmacologia , Proteína Forkhead Box M1/antagonistas & inibidores , Proteínas Hedgehog/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diarileptanoides/química , Diarileptanoides/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Forkhead Box M1/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Proteína GLI1 em Dedos de Zinco/metabolismo
17.
Chem Pharm Bull (Tokyo) ; 65(4): 349-355, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28132960

RESUMO

Many aminodihydroquinoline compounds have been studied to determine their cytotoxicity to cancer cells. However, anti-cancer stem cells (CSCs) activity of aminodihydroquinoline has not been tested in spite that CSC is believed to do an important roles in chemotherapy resistance and recurrence. The CSC selective targeting activities of 10 recently synthesized 2-aminodihydroquinoline analogs were examined on CSCs and bulk culture of a glioblastoma cell line. A diethylaminopropyl substituted aminodihydroquinoline, 5h, showed a strong anti-CSC effect and general cytotoxicity. However, a benzyl substituted aminodihydroquinoline, 5i, displayed the most effective anti-CSC effect, with no or small significant cytotoxic effect in bulk culture conditions. While 5h temporarily enhanced CSC marker-positive cells and eventually suppressed the CSC population, which is similar to other cytotoxic anticancer reagents reported, 5i selectively eliminated CSC marker-positive cells based on fluorescence activated cell sorter (FACS) analysis. 5h also temporarily activated some genes associated with signaling required for CSC, while 5i selectively suppressed these genes supporting that the differential effects are resulted from different molecular responses. In addition, the selective CSC effect is also found against a colon cancer cell line. Collectively, we suggest that these two novel aminodihydroquinoline compounds possess novel anti-CSC effects in colon and brain tumor derived cell lines probably through independent pathways.


Assuntos
Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Quinolinas/farmacologia , Antineoplásicos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Quinolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
J Invest Dermatol ; 137(2): 414-421, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27670610

RESUMO

The Mis18 proteins (Mis18α, Mis18ß, and M18BP1) are pivotal to the deposition of CENP-A at the centromere during cell cycle progression and are indispensable for embryonic development. Here, we show that Mis18α is critical for the proliferation of keratinocytes and stratification of the epidermis. Mice lacking Mis18α in the epidermis died shortly after birth, showing skin abnormalities like thin and translucent skin and defective skin barrier functions. The epidermis of newborn Mis18α-deficient mice lacked distinct stratification and mature hair follicles, with a reduction in the number of proliferating cells and increased cell death in the basal layer. Earlier expression of the Cre recombinase from keratin-14 promoter in the ventral region resulted in earlier keratinocyte death in the ventral part compared with the dorsal part in the absence of Mis18α, leading to more severe malformation of the ventral epidermal layers. As observed in Mis18α-deficient mouse keratinocytes, knockdown of Mis18α in HaCaT cells caused marked loss of centromeric CENP-A dots and chromosomal misalignment. Overall, we propose that Mis18α is important for epidermal cell proliferation and stratification, because it is required for the deposition of CENP-A at the centromeric nucleosomes.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Queratinócitos/fisiologia , Pele/química , Animais , Apoptose , Proliferação de Células , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/genética , Humanos , Camundongos , RNA Mensageiro/análise , Pele/embriologia
19.
Biochem Biophys Res Commun ; 482(1): 28-34, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836539

RESUMO

Infection with pathogens activates the endothelial cell and its sustained activation may result in impaired endothelial function. Endothelial dysfunction contributes to the pathologic angiogenesis that is characteristic of infection-induced inflammatory pathway activation. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a protein receptor which recognizes bacterial molecules and stimulates an immune reaction in various cells; however, the underlying molecular mechanisms in the regulation of inflammation-triggered angiogenesis are not fully understood. Here we report that peroxisome proliferator-activated receptor gamma (PPARγ)-mediated miR-125a serves as an important regulator of NOD1 agonist-mediated angiogenesis in endothelial cells by directly targeting NOD1. Treatment of human umbilical vein endothelial cells with natural PPARγ ligand, 15-Deoxy-Delta12,14-prostaglandin J2, led to inhibition of NOD1 expression; contrarily, protein levels of NOD1 were significantly increased by PPARγ knockdown. We report that PPARγ regulation of NOD1 expression is a novel microRNA-mediated regulation in endothelial cells. MiR-125a expression was markedly decreased in human umbilical vein endothelial cells subjected to PPARγ knockdown while 15-Deoxy-Delta12,14-prostaglandin J2 treatment increased the level of miR-125a. In addition, NOD1 is closely regulated by miR-125a, which directly targets the 3' untranslated region of NOD1. Moreover, both overexpression of miR-125a and PPARγ activation led to inhibition of NOD1 agonist-induced tube formation in endothelial cells. Finally, NOD1 agonist increased the formation of cranial and subintestinal vessel plexus in zebrafish, and this effect was abrogated by concurrent PPARγ activation. Overall, these findings identify a PPARγ-miR-125a-NOD1 signaling axis in endothelial cells that is critical in the regulation of inflammation-mediated angiogenesis.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , PPAR gama/metabolismo , Vasculite/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Células Endoteliais/patologia , Humanos , Neovascularização Patológica/patologia , Vasculite/patologia , Peixe-Zebra
20.
Arch Pharm Res ; 40(1): 106-111, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27796936

RESUMO

Oxidative stress exacerbates drug dependence induced by administration of opiate analgesics such as morphine-induced tolerance and physical dependence associated with the reduction in hepatic glutathione (GSH) level. Ajoene obtained from garlic (Allium sativum L.) has been reported for anti-tumorigenic, anti-oxidative and neuroprotective properties, however, little is known about its effect on morphine-induced dependence. Therefore, this study aimed at the effect of ajoene on physical and/or psychological dependence and liver GSH content in morphine-treated mice. Conditioned place preference (CPP) test and measurement of morphine withdrawal syndrome were performed in C57BL6 mice for behavioral experiments. Thereafter, mice were sacrificed for measurement of serum and liver GSH levels. Ajoene restored CPP and naloxone-precipitated jumping behavior in mice exposed to morphine. Moreover, the reduced level of liver GSH content in morphine treated mice was back to normal after ajoene administration. Taken together, ajoene improved behavioral patterns in mice exposed to morphine suggesting its potential therapeutic benefit against morphine-induced dependence.


Assuntos
Condicionamento Psicológico/fisiologia , Dissulfetos/farmacologia , Glutationa/metabolismo , Fígado/metabolismo , Morfina/farmacologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Dissulfetos/uso terapêutico , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/efeitos adversos , Distribuição Aleatória , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/metabolismo , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA