Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 185: 108522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401434

RESUMO

The rapidly increasing prevalence of obesity and overweight, especially in children and adolescents, has become a serious societal issue. Although various genetic and environmental risk factors for pediatric obesity and overweight have been identified, the problem has not been solved. In this study, we examined whether environmental nanoplastic (NP) pollutants can act as environmental obesogens using mouse models exposed to NPs derived from polystyrene and polypropylene, which are abundant in the environment. We found abnormal weight gain in the progeny until 6 weeks of age following the oral administration of NPs to the mother during gestation and lactation. Through a series of experiments involving multi-omic analyses, we have demonstrated that NP-induced weight gain is caused by alterations in the lipid composition (lysophosphatidylcholine/phosphatidylcholine ratio) of maternal breast milk and he gut microbiota distribution of the progeny. These data indicate that environmental NPs can act as obesogens in childhood.


Assuntos
Microbiota , Obesidade Infantil , Masculino , Criança , Feminino , Animais , Camundongos , Humanos , Adolescente , Sobrepeso/epidemiologia , Microplásticos , Aumento de Peso , Leite Humano , Mães , Lipídeos , Ingestão de Alimentos
2.
Adv Sci (Weinh) ; 11(4): e2307182, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949680

RESUMO

Intracellular C-terminal cleavage of the amyloid precursor protein (APP) is elevated in the brains of Alzheimer's disease (AD) patients and produces a peptide labeled APP-C31 that is suspected to be involved in the pathology of AD. But details about the role of APP-C31 in the development of the disease are not known. Here, this work reports that APP-C31 directly interacts with the N-terminal and self-recognition regions of amyloid-ß40 (Aß40 ) to form transient adducts, which facilitates the aggregation of both metal-free and metal-bound Aß40 peptides and aggravates their toxicity. Specifically, APP-C31 increases the perinuclear and intranuclear generation of large Aß40 deposits and, consequently, damages the nucleus leading to apoptosis. The Aß40 -induced degeneration of neurites and inflammation are also intensified by APP-C31 in human neurons and murine brains. This study demonstrates a new function of APP-C31 as an intracellular promoter of Aß40 amyloidogenesis in both metal-free and metal-present environments, and may offer an interesting alternative target for developing treatments for AD that have not been considered thus far.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Camundongos , Animais , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apoptose , Regiões Promotoras Genéticas/genética , Metais/toxicidade
3.
Cell Biosci ; 12(1): 110, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869491

RESUMO

BACKGROUND: Spastin significantly influences microtubule regulation in neurons and is implicated in the pathogenesis of hereditary spastic paraplegia (HSP). However, post-translational regulation of the spastin protein remains nebulous. The association between E3 ubiquitin ligase and spastin provides a potential therapeutic strategy. RESULTS: As evidenced by protein chip analysis, FBXL17 inversely correlated with SPAST-M1 at the protein level in vitro and, also in vivo during embryonic developmental stage. SPAST-M1 protein interacted with FBXL17 specifically via the BTB domain at the N-terminus of SPAST-M1. The SCFFBXL17 E3 ubiquitin ligase complex degraded SPAST-M1 protein in the nuclear fraction in a proteasome-dependent manner. SPAST phosphorylation occurred only in the cytoplasmic fraction by CK2 and was involved in poly-ubiquitination. Inhibition of SCFFBXL17 E3 ubiquitin ligase by small chemical and FBXL17 shRNA decreased proteasome-dependent degradation of SPAST-M1 and induced axonal extension. The SPAST Y52C mutant, harboring abnormality in BTB domain could not interact with FBXL17, thereby escaping protein regulation by the SCFFBXL17 E3 ubiquitin ligase complex, resulting in loss of functionality with aberrant quantity. Although this mutant showed shortening of axonal outgrowth, low rate proliferation, and poor differentiation capacity in a 3D model, this phenotype was rescued by inhibiting SCFFBXL17 E3 ubiquitin ligase. CONCLUSIONS: We discovered that a novel pathway, FBXL17-SPAST was involved in pathogenicity of HSP by the loss of function and the quantitative regulation. This result suggested that targeting FBXL17 could provide new insight into HSP therapeutics.

4.
Mol Neurobiol ; 59(3): 1398-1418, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997539

RESUMO

TREX1 is an exonuclease that degrades extranuclear DNA species in mammalian cells. Herein, we show a novel mechanism by which TREX1 interacts with the BiP/GRP78 and TREX1 deficiency triggers ER stress through the accumulation of single-stranded DNA and activates unfolded protein response (UPR) signaling via the disruption of the TREX1-BiP/GRP78 interaction. In TREX1 knockdown cells, the activation of ER stress signaling disrupted ER Ca2+ homeostasis via the ERO1α-IP3R1-CaMKII pathway, leading to neuronal cell death. Moreover, TREX1 knockdown dysregulated the Golgi-microtubule network through Golgi fragmentation and decreased Ac-α-tubulin levels, contributing to neuronal injury. These alterations were also observed in neuronal cells harboring a TREX1 mutation (V91M) that has been identified in hereditary spastic paraplegia (HSP) patients in Korea. Notably, this mutation leads to defects in the TREX1-BiP/GRP78 interaction and mislocalization of TREX1 from the ER and possible disruption of the Golgi-microtubule network. In summary, the current study reveals TREX1 as a novel regulator of the BiP/GRP78 interaction and shows that TREX1 deficiency promotes ER stress-mediated neuronal cell death, which indicates that TREX1 may hold promise as a therapeutic target for neurodegenerative diseases such as HSP.


Assuntos
Retículo Endoplasmático , Proteínas de Choque Térmico , Animais , Morte Celular , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Homeostase , Humanos , Mamíferos/metabolismo
5.
J Hazard Mater ; 426: 127815, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823950

RESUMO

As global plastic production continues to grow, microplastics released from a massive quantity of plastic wastes have become a critical environmental concern. These microplastic particles are found in a wide range of living organisms in a diverse array of ecosystems. In this study, we investigated the biological effects of polystyrene nanoplastic (PSNP) on development of the central nervous system using cultured neural stem cells (NSCs) and mice exposed to PSNP during developmental stages. Our study demonstrates that maternal administration of PSNP during gestation and lactating periods altered the functioning of NSCs, neural cell compositions, and brain histology in progeny. Similarly, PSNP-induced molecular and functional defects were also observed in cultured NSCs in vitro. Finally, we show that the abnormal brain development caused by exposure to high concentrations of PSNP results in neurophysiological and cognitive deficits in a gender-specific manner. Our data demonstrate the possibility that exposure to high amounts of PSNP may increase the risk of neurodevelopmental defects.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Encéfalo , Ecossistema , Feminino , Humanos , Lactação , Exposição Materna/estatística & dados numéricos , Camundongos , Plásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/análise
6.
Neuroscience ; 411: 76-85, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31150727

RESUMO

Spastin is a microtubule-severing enzyme encoded by SPAST, which is broadly expressed in various cell types originated from multiple organs. Even though SPAST is well known as a regulator of the axon growth and arborization in neurons and a genetic factor of hereditary spastic paraplegia, it also takes part in a wide range of other cellular functions including the regulation of cell division and proliferation. In this study, we investigated a novel biological role of spastin in developing brain using Spast deficient mouse embryonic neural stem cells (NSCs) and perinatal mouse brain. We found that the expression of spastin begins at early embryonic stages in mouse brain. Using Spast shRNA treated NSCs and mouse brain, we showed that Spast deficiency leads to decrease of NSC proliferation and neuronal lineage differentiation. Finally, we found that spastin controls NSC proliferation by regulating microtubule dynamics in primary cilia. Collectively, these data demonstrate that spastin controls brain development by the regulation of NSC functions at early developmental stages.


Assuntos
Encéfalo/metabolismo , Cílios/metabolismo , Microtúbulos/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Espastina/metabolismo , Animais , Proliferação de Células/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Espastina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA