Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37902875

RESUMO

H2 production via water-gas shift reaction (WGS) is an important process and applied widely. Cobalt-modified CeO2 are promising catalysts for WGS reaction. Herein, a series of Co/Nb-CeO2 catalysts were prepared by varying the rate of precipitant addition during the coprecipitation method and examined for hydrogen generation through WGS reaction. The rates of precipitant addition were 1, 5, 15, and 25 mL/min. We obtained ceria supported cobalt catalysts with different sizes and morphology such as 3, 8 nm nanoclusters, 30 nm cubic nanoparticles, and 50 nm hexagonal nanoparticles. The well dispersed small cobalt particles in Co/Nb-CeO2 that was prepared at 5 mL/min titration rate exhibit strong interaction between cobalt oxide and CeO2 that retards the reduction of CoOx producing Co-CoOx pairs. In contrast, 1-Co/Nb-CeO2 and 25-Co/Nb-CeO2 result in bigger and aggregated Co particles, resulting in fewer interfaces with CeO2. The Co0, Coδ+, Ce3+, and Ov species are responsible for improved reducibility in Co/Nb-CeO2 catalysts and were quantitively measured using XPS, XAS, and Raman spectroscopy. The Co-CoOx interface assists dissociation of the H2O molecule; CO oxidation requires low activation energy and realizes a high turnover frequency of 9.8 s-1. The 5-Co/Nb-CeO2 catalyst achieved thermodynamic equilibrium equivalent CO conversion with efficient H2 production during WGS reaction at a gas hourly space velocity of 315,282 h-1. Successively, the 5-Co/Nb-CeO2 catalyst exhibited stable performance for straight 168 h attributed to stable CO-Coδ+ intermediate formation, achieving efficient inhibition of typical CO chemistry over the Co metal, suitable for hydrogen generation from waste derived synthesis gas.

2.
Sci Rep ; 12(1): 12800, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896703

RESUMO

Various agents, including ethylenediaminetetraacetic acid, oxalic acid, citric acid, and HCl, were applied to remove heavy metals from raw paper incineration ash and render the ash recyclable. Among these prepared agent solutions, ethylenediaminetetraacetic acid showed the highest efficiency for Pb removal, while oxalic acid showed the highest efficiencies for Cu, Cd, and As removal. Additionally, three modes of an advanced removal method, which involved the use of both ethylenediaminetetraacetic acid and oxalic acid, were considered for use at the end of the rendering process. Among these three modes of the advanced removal method, that which involved the simultaneous use of ethylenediaminetetraacetic acid and oxalic acid, i.e., a mixture of both solutions, showed the best heavy metal removal efficiencies. In detail, 11.9% of Cd, 10% of Hg, 28.42% of As, 31.29% of Cu, and 49.19% of Pb were removed when this method was used. Furthermore, the application of these three modes of the advanced removal method resulted in a decrease in the amounts of heavy metals eluted and brought about an increase in the CaO content of the treated incineration ash, while decreasing its Cl content. These combined results enhanced the solidification effect of the treated incineration ash. Thus, it was confirmed that the advanced removal method is a promising strategy by which recyclable paper incineration ash can be obtained.

3.
Waste Manag ; 144: 272-284, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35421707

RESUMO

In this study, hydrogen production using food waste was optimized by investigating the effect of agitator types in anaerobic digestion reactors and catalysts for biogas reforming. The applied agitators were pitched blade and hydrofoil, and their effect on homogeneity was estimated using computational fluid dynamics. Reactors with different agitators were operated for 60 days for biogas production. Increased biogas production was observed in the reactor equipped with a hydrofoil agitator owing to its high homogeneity. In addition, Ni-CeZrO2 catalysts promoted with La2O3, CaO, or MgO were investigated for stable hydrogen production during the biogas reforming reaction using simulated gas based on biogas from the anaerobic digestion equipped the hydrofoil. Among the promoted catalysts, the MgO-promoted Ni-CeZrO2 catalyst displayed the best results for hydrogen production without significant deactivation. The stable catalytic performance of the MgO-promoted catalyst resulted from the close interaction between Ni and MgO, and its high oxygen storage capacity. Thus, 1216 L hydrogen and 646 L carbon monoxide were produced per kilogram volatile solid via the hydrogen production system that included anaerobic digestion and biogas reforming.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Alimentos , Hidrogênio , Óxido de Magnésio , Metano
4.
Artigo em Inglês | MEDLINE | ID: mdl-28991163

RESUMO

To obtain a suitable oxidation method for removing the color and lowering the chemical oxygen demand (COD) of waste soy sauce, Fenton (Fe2+), Fenton-like (Fe3+), and ozone (O3) oxidation methods are used as the target reactions. In experimental conditions for Fenton oxidation, the dose of Fe2+ and Fe3+ was varied between 100 mg/L and 300 mg/L. The dose of hydrogen peroxide for the reaction was injected from 100-1000 mg/L. For ozone oxidation, the pH was increased from 3 to 14 and the O3-containing gas was supplied continuously for 30 min through a gas diffuser at the bottom of the reactor at different applied O3 doses (10-90 mg/L). We subjected it to a simple 1:20 dilution with deionized water to identify the comparison result in detail. O3 oxidation shows the highest efficiencies of color removal (81.1%) and COD lowering (64.9%) among the three oxidation methods. This is mainly due to the fact that it has a relatively large amount of hydroxyl radical, resulting in the degradation of organics. Thus, O3 oxidation could be a promising method for removing the color and lowering the COD of waste soy sauce. The critical parameters (pH and applied O3 dose) were varied systematically to optimize O3 oxidation. It was found that the optimum pH and applied O3 dose are 11.0 mg/L and 50.0 mg/L, respectively (color removal = 34.2%, COD removal = 27.4%).


Assuntos
Alimentos de Soja , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Análise da Demanda Biológica de Oxigênio , Cor , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Oxidantes/química , Oxirredução , Ozônio/química , Águas Residuárias
5.
J Nanosci Nanotechnol ; 16(5): 4587-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483795

RESUMO

Ce0.6Zr0.4O2 supported transition metal (Me = Ni, Cu, Co, and Mo) catalysts have been investigated to screen for the catalytic activity and selectivity for deoxygenation reaction of oleic acid. Me-Ce0.6Zr0.4O2 catalysts were prepared by a co-precipitation method. Ni-Ce0.6Zr0.4O2 catalyst exhibited much higher oleic acid conversion, selectivity for C9 to C17 compounds, and oxygen removal efficiency than the others. This is mainly ascribed to the presence of free Ni species, synergy effects between Ni and Ce0.6Zr0.4O2, and the highest BET surface area.

6.
Chem Commun (Camb) ; 49(96): 11257-9, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23928578

RESUMO

High temperature water-gas shift reaction was demonstrated for the first time on a CuFe2O4-mesoporous alumina nanocomposite between 350 and 550 °C with 70-80% CO-conversion using simulated waste derived syngas under realistic conditions. Despite high Al-content, the catalyst exhibited stable activity, which was attributed to the nano-architectured robust porous nature of alumina integrated with surrounding CuFe2O4.

7.
Water Res ; 43(14): 3525-33, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19555990

RESUMO

The effect of chemical oxygen demand/sulfate (COD/SO(4)(2-)) ratio on fermentative hydrogen production using enriched mixed microflora has been studied. The chemostat system maintained with a substrate (glucose) concentration of 15 g COD L(-1) exhibited stable H(2) production at inlet sulfate concentrations of 0-20 g L(-1) during 282 days. The tested COD/SO(4)(2-) ratios ranged from 150 to 0.75 (with control) at pH 5.5 with hydraulic retention time (HRT) of 24, 12 and 6h. The hydrogen production at HRT 6h and pH 5.5 was not influenced by decreasing the COD/SO(4)(2-) ratio from 150 to 15 (with control) followed by noticeable increase at COD/SO(4)(2-) ratios of 5 and 3, but it was slightly decreased when the COD/SO(4)(2-) ratio further decreased to 1.5 and 0.75. These results indicate that high sulfate concentrations (up to 20,000 mg L(-1)) would not interfere with hydrogen production under the investigated experimental conditions. Maximum hydrogen production was 2.95, 4.60 and 9.40 L day(-1) with hydrogen yields of 2.0, 1.8 and 1.6 mol H(2) mol(-1) glucose at HRTs of 24, 12 and 6h, respectively. The volatile fatty acid (VFA) fraction produced during the reaction was in the order of butyrate>acetate>ethanol>propionate in all experiments. Fluorescence In Situ Hybridization (FISH) analysis indicated the presence of Clostridium spp., Clostridium butyricum, Clostridium perfringens and Ruminococcus flavefaciens as hydrogen producing bacteria (HPB) and absence of sulfate reducing bacteria (SRB) in our study.


Assuntos
Fermentação , Hidrogênio/química , Ferro/química , Oxigênio/química , Sulfatos/química , Acetatos/análise , Bactérias/genética , Reatores Biológicos , Butiratos/análise , Etanol/análise , Ácidos Graxos Voláteis/análise , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Solubilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA