RESUMO
In next-generation neuromorphic computing applications, the primary challenge lies in achieving energy-efficient and reliable memristors while minimizing their energy consumption to a level comparable to that of biological synapses. In this work, hexagonal boron nitride (h-BN)-based metal-insulator-semiconductor (MIS) memristors operating is presented at the attojoule-level tailored for high-performance artificial neural networks. The memristors benefit from a wafer-scale uniform h-BN resistive switching medium grown directly on a highly doped Si wafer using metal-organic chemical vapor deposition (MOCVD), resulting in outstanding reliability and low variability. Notably, the h-BN-based memristors exhibit exceptionally low energy consumption of attojoule levels, coupled with fast switching speed. The switching mechanisms are systematically substantiated by electrical and nano-structural analysis, confirming that the h-BN layer facilitates the resistive switching with extremely low high resistance states (HRS) and the native SiOx on Si contributes to suppressing excessive current, enabling attojoule-level energy consumption. Furthermore, the formation of atomic-scale conductive filaments leads to remarkably fast response times within the nanosecond range, and allows for the attainment of multi-resistance states, making these memristors well-suited for next-generation neuromorphic applications. The h-BN-based MIS memristors hold the potential to revolutionize energy consumption limitations in neuromorphic devices, bridging the gap between artificial and biological synapses.
RESUMO
We present resistive switching (RS) behavior of few-layer hexagonal boron nitride (h-BN) mediated by defects and interfacial charge transfer. Few-layer h-BN is grown by metal-organic chemical vapor deposition and used as active RS medium in Ti/h-BN/Au structure, exhibiting clear bipolar RS behavior and fast switching characteristics about â¼25 ns without an initial electroforming process. Systematic investigation on microstructural and chemical characteristics of the h-BN reveals that there are structural defects such as homoelemental B-B bonds at grain boundaries and nitrogen vacancies, which can provide preferential pathways for the penetration of Tix+ ions through the h-BN film. In addition, the interfacial charge transfer from Ti to the h-BN is observed by in situ X-ray photoelectron spectroscopy. We suggest that the attractive Coulomb interaction between positively charged Tix+ ions and the negatively charged h-BN surface as a result of the interfacial charge transfer facilitates the migration of Tix+ ions at the Ti/h-BN interface, leading to the facile formation of conductive filaments. We believe that these findings can improve our understanding of the fundamental mechanisms involved in RS behavior of h-BN and contribute a significant step for the future development of h-BN-based nonvolatile memory applications.
RESUMO
Two-dimensional (2-D) hexagonal boron nitride (h-BN) has attracted considerable attention for deep ultraviolet optoelectronics and visible single photon sources, however, realization of an electrically-driven light emitter remains challenging due to its wide bandgap nature. Here, we report electrically-driven visible light emission with a red-shift under increasing electric field from a few layer h-BN by employing a five-period Al2O3/h-BN multiple heterostructure and a graphene top electrode. Investigation of electrical properties reveals that the Al2O3 layers act as potential barriers confining injected carriers within the h-BN wells, while suppressing the electrostatic breakdown by trap-assisted tunneling, to increase the probability of radiative recombination. The result highlights a promising potential of such multiple heterostructure as a practical and efficient platform for electrically-driven light emitters based on wide bandgap two-dimensional materials.
RESUMO
Remarkable improvements in both structural and optical properties of wafer-scale hexagonal boron nitride (h-BN) films grown by metal-organic chemical vapor deposition (MOCVD) enabled by high-temperature post-growth annealing is presented. The enhanced crystallinity and homogeneity of the MOCVD-grown h-BN films grown at 1050 °C is attributed to the solid-state atomic rearrangement during the thermal annealing at 1600 °C. In addition, the appearance of the photoluminescence by excitonic transitions as well as enlarged optical band gap were observed for the post-annealed h-BN films as direct consequences of the microstructural improvement. The post-growth annealing is a very promising strategy to overcome limited crystallinity of h-BN films grown by typical MOCVD systems while maintaining their advantage of multiple wafer scalability for practical applications towards two-dimensional electronics and optoelectronics.
RESUMO
We demonstrate wafer-scale growth of high-quality hexagonal boron nitride (h-BN) film on Ni(111) template using metal-organic chemical vapor deposition (MOCVD). Compared with inert sapphire substrate, the catalytic Ni(111) template facilitates a fast growth of high-quality h-BN film at the relatively low temperature of 1000 °C. Wafer-scale growth of a high-quality h-BN film with Raman E2g peak full width at half maximum (FWHM) of 18~24 cm-1 is achieved, which is to the extent of our knowledge the best reported for MOCVD. Systematic investigation of the microstructural and chemical characteristics of the MOCVD-grown h-BN films reveals a substantial difference in catalytic capability between the Ni(111) and sapphire surfaces that enables the selective-area growth of h-BN at pre-defined locations over a whole 2-inch wafer. These achievement and findings have advanced our understanding of the growth mechanism of h-BN by MOCVD and will contribute an important step toward scalable and controllable production of high-quality h-BN films for practical integrated two-dimensional materials-based systems and devices.
RESUMO
In-plane electrical conduction in sp2-hybridized boron nitride (sp2-BN) is presented to explore a huge potential of sp2-BN as an active material for electronics and ultraviolet optoelectronics. Systematic investigation on temperature-dependent current-voltage ( I- V) characteristics of a few-layer sp2-BN grown by metal-organic vapor-phase epitaxy reveals two types of predominant conduction mechanisms that are Ohmic conduction at the low bias region and space-charge-limited conduction at the high bias region. From the temperature-dependent I- V characteristics, two shallow traps with activation energies of approximately 25 and 185 meV are observed. On the basis of the near-edge X-ray absorption fine-structure spectroscopy, boron-boron (B-B) homoelemental bonding which can be related to grain boundary and nitrogen vacancy (VN) are proposed as the origin of the shallow traps mediating the in-plane conduction in the sp2-BN layer. In addition, a drastic enhancement in the electrical conductivity is observed with the increasing amount of VN that acts as a donor, implying that controlled generation of VN can be an alternative and better approach for the n-type doping of the sp2-BN film rather than ineffective conventional substitutional doping methods.
RESUMO
Various tandem cell configurations have been reported for highly efficient and spontaneous hydrogen production from photoelectrochemical solar water splitting. However, there is a contradiction between two main requirements of a front photoelectrode in a tandem cell configuration, namely, high transparency and high photocurrent density. Here we demonstrate a simple yet highly effective method to overcome this contradiction by incorporating a hybrid conductive distributed Bragg reflector on the back side of the transparent conducting substrate for the front photoelectrochemical electrode, which functions as both an optical filter and a conductive counter-electrode of the rear dye-sensitized solar cell. The hybrid conductive distributed Bragg reflectors were designed to be transparent to the long-wavelength part of the incident solar spectrum (λ>500 nm) for the rear solar cell, while reflecting the short-wavelength photons (λ<500 nm) which can then be absorbed by the front photoelectrochemical electrode for enhanced photocurrent generation.