Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1343932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601504

RESUMO

The dynamic interplay between Artificial Intelligence (AI) adoption in modern organizations and its implications for employee well-being presents a paramount area of academic exploration. Within the context of rapid technological advancements, AI's promise to revolutionize operational efficiency juxtaposes challenges relating to job stress and employee health. This study explores the nuanced effects of Artificial Intelligence (AI) adoption on employee physical health within organizational settings, investigating the potential mediating role of job stress and the moderating influence of coaching leadership. Drawing from the conservation of resource theory, the research hypothesized that AI adoption would negatively impact employee physical health both directly and indirectly through increased job stress. Critically, our conceptual model underscores the mediating role of job stress between AI adoption and physical health. Further, introducing a novel dimension to this discourse, we postulate the moderating influence of coaching leadership. To empirically test the hypotheses, we gathered survey data from 375 South Korean workers with a three-wave time-lagged research design. Our results demonstrated that all the hypotheses were supported. The results have significant implications for organizational strategies concerning AI implementation and leadership development.


Assuntos
Tutoria , Saúde Ocupacional , Estresse Ocupacional , Humanos , Inteligência Artificial , Liderança , Estresse Ocupacional/prevenção & controle
2.
Sci Adv ; 10(17): eadm7315, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657066

RESUMO

Nanoconfined waters exhibit low static permittivity mainly due to interfacial effects that span about one nanometer. The characteristic length scale may be much longer in the terahertz (THz) regime where long-range collective dynamics occur; however, the THz dynamics have been largely unexplored because of the lack of a robust platform. Here, we use metallic loop nanogaps to sharply enhance light-matter interactions and precisely measure real and imaginary THz refractive indices of nanoconfined water at gap widths ranging from 2 to 20 nanometers, spanning mostly interfacial waters all the way to quasi-bulk waters. We find that, in addition to the well-known interfacial effect, the confinement effect also contributes substantially to the decrease in the complex refractive indices of the nanoconfined water by cutting off low-energy vibrational modes, even at gap widths as large as 10 nanometers. Our findings provide valuable insights into the collective dynamics of water molecules which is crucial to understanding water-mediated processes.

3.
Nano Lett ; 23(15): 7086-7091, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37471630

RESUMO

Metallic nanogaps have emerged as a versatile platform for realizing ultrastrong coupling in terahertz frequencies. Increasing the coupling strength generally involved reducing the gap width to minimize the mode volume, which presents challenges in fabrication and efficient material coupling. Here, we propose employing terahertz nanoslots, which can efficiently squeeze the mode volume in an extra dimension alongside the gap width. Our experiments using 500 nm wide nanoslots integrated with an organic-inorganic hybrid perovskite demonstrate ultrastrong phonon-photon coupling with a record-high Rabi splitting of 48% of the original resonance (Ω = 0.48ω0), despite having a gap width 5 times larger than previously reported structures with Ω = 0.45ω0. Mechanisms underlying this effective light--matter coupling are investigated with simulations using coupled mode theory. Moreover, bulk polariton analyses reveal that our results account for 68% of the theoretical maximum Rabi splitting, with the potential to reach 82% through further optimization of the nanoslots.

4.
Front Public Health ; 11: 1108881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992879

RESUMO

As the global economy deteriorates because of the great shocks such as COVID-19 pandemic and wars among nations, the business environment is suffered from uncertainty and risk. To deal with it, several firms have attempted to maximize its efficiency via downsizing and restructuring to diminish costs. Thus, the degree of anxiety is increased among employees who worry about the loss of their job. The current research hypothesizes that job insecurity increases employees' knowledge hiding behavior by diminishing the degree of their psychological safety. In other words, psychological safety functions as the underlying process (i.e., mediator) in the job insecurity-knowledge hiding behavior link. Furthermore, this paper tries to examine the boundary condition of how to decrease the detrimental influence of job insecurity, focusing on the moderating effect of servant leadership. Utilizing a 3-wave time-lagged data from 365 Korean employees, we empirically demonstrated that employees who perceive job insecurity are less likely to perceive psychological safety, eventually increasing their knowledge hiding behavior. We also found that servant leadership functions as a positive moderator which buffers the negative impact of job insecurity on psychological safety. Theoretical and practical contributions are described.


Assuntos
COVID-19 , Liderança , Humanos , Pandemias , COVID-19/epidemiologia , Ansiedade , Emprego
5.
Artigo em Inglês | MEDLINE | ID: mdl-36498090

RESUMO

As the global economic situation deteriorates due to the prolonged COVID-19 pandemic, the business environment is plagued by uncertainty and risk. To address this, many organizations have sought to optimize efficiency, especially by downsizing and restructuring, to reduce costs. This causes anxiety among employees, who worry about whether they will be fired. We hypothesize that such job insecurity increases knowledge-hiding behavior by employees, and we investigate the mechanism underlying such a negative effect. In addition, we attempt to capture the boundary conditions of how to reduce the adverse effects of job insecurity, focusing on the role of coaching leadership. Using three-wave time-lagged cohort-study data from 346 Korean workers, we empirically found that employees who perceive job insecurity are less likely to feel organizational identification, leading to increased knowledge-hiding behavior. This study also demonstrated that coaching leadership operates as a boundary condition which buffers the negative influence of job insecurity on organizational identification. Theoretical and practical implications are discussed.


Assuntos
COVID-19 , Satisfação no Emprego , Humanos , Pandemias , COVID-19/epidemiologia , Liderança , Organizações
6.
Sci Rep ; 12(1): 18386, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319666

RESUMO

Electromagnetic absorbers based on ultra-thin metallic film are desirable for many applications such as plasmonics, metamaterials, and long-wavelength detectors. A metallic film will achieve a maximum 50% of electromagnetic wave absorption, frequency independent, at a thickness defined by its conductivity, typically in the sub-Angstrom range for good metals if bulk conductivity is maintained throughout. This makes it extremely difficult to obtain substantial absorption from thin metal films, in contrast to 2D materials such as graphene. Luckily, however, from a practical point of view, metal conductivity is drastically reduced as the film becomes sub-100 nm, to make it a race between the thinnest possible metal thickness experimentally achievable vs the conductivity reduction. Here, we demonstrate a near-50% absorption at a gold film thickness of 6.5 nm, with conductivity much reduced from the bulk value, down to the range of 106 Siemens per meter. Studying the effect of the substrate thickness, we found that the common cover glass, with its thickness much smaller than the wavelength, achieves symmetric absorption of 44%, implying that a pseudo-free-standing limit is achieved. Our work may find applications in infrared sensing as in bolometers and biomedical sensing using microwaves.

7.
Opt Express ; 30(17): 30038-30046, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242115

RESUMO

Critical factors for terahertz polarizers include broadband operation, high transmittance, and a good extinction ratio. In this paper, using a 5 nm-wide metallic slit array with a 200 nm periodicity as a wire grid polarizer, we achieved over 95% transmittance with an average extinction ratio of 40 dB, over the entire spectrum as defined by the terahertz time-domain spectroscopy (0.4 ∼ 2 THz). Theoretical calculations revealed that the slit array can show 100% transmission up to 5 THz, and wider bandwidths with a higher cutoff frequency can be achieved by reducing the slit periodicity. These results provide a novel approach for achieving a broadband THz polarizer and open a new path for seamless integration of the polarizers with nanophotonic applications.

8.
J Phys Chem Lett ; 13(13): 2969-2975, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343701

RESUMO

A well-designed narrow gap between noble metal nanostructures plays a prominent role in surface-enhanced Raman scattering (SERS) to concentrate electromagnetic fields at the local point, called a "hot spot". However, SERS-active substrate fabrication remains a substantial hurdle due to the high process cost and the difficulty of engineering efficient plasmonic hot spots at the target area. In this study, we demonstrate a simple photolithographic method for generating ultrasensitive SERS hot spots at desired positions. The solid-state dewetting of a Ag thin film (thickness of ∼10 nm) using a continuous-wave laser (∼1 MW/cm2) generates a closely packed assembly of hemispherical Ag nanoislands. Some of these nanoislands provide substantial plasmonic-field enhancement that is sufficient for single-molecule detection and plasmon-catalyzed chemical reaction. Such hot spot structures can be patterned on the substrate with a spatial resolution of better than 1 µm. In integrated analytical devices, the patterned SERS hot spots can be used as position-specific chemical-sensing elements.

9.
Nano Lett ; 21(23): 9930-9938, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34797671

RESUMO

Recent advances in emerging atomically thin transition metal dichalcogenide semiconductors with strong light-matter interactions and tunable optical properties provide novel approaches for realizing new material functionalities. Coupling two-dimensional semiconductors with all-dielectric resonant nanostructures represents an especially attractive opportunity for manipulating optical properties in both the near-field and far-field regimes. Here, by integrating single-layer WSe2 and titanium oxide (TiO2) dielectric metasurfaces with toroidal resonances, we realized robust exciton emission enhancement over 1 order of magnitude at both room and low temperatures. Furthermore, we could control exciton dynamics and annihilation by using temperature to tailor the spectral overlap of excitonic and toroidal resonances, allowing us to selectively enhance the Purcell effect. Our results provide rich physical insight into the strong light-matter interactions in single-layer TMDs coupled with toroidal dielectric metasurfaces, with important implications for optoelectronics and photonics applications.

10.
Nanomaterials (Basel) ; 11(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808551

RESUMO

A metallic nano-trench is a unique optical structure capable of ultrasensitive detection of molecules, active modulation as well as potential electrochemical applications. Recently, wet-etching the dielectrics of metal-insulator-metal structures has emerged as a reliable method of creating optically active metallic nano-trenches with a gap width of 10 nm or less, opening a new venue for studying the dynamics of nanoconfined molecules. Yet, the high surface tension of water in the process of drying leaves the nano-trenches vulnerable to collapsing, limiting the achievable width to no less than 5 nm. In this work, we overcome the technical limit and realize metallic nano-trenches with widths as small as 1.5 nm. The critical point drying technique significantly alleviates the stress applied to the gap in the drying process, keeping the ultra-narrow gap from collapsing. Terahertz spectroscopy of the trenches clearly reveals the signature of successful wet etching of the dielectrics without apparent damage to the gap. We expect that our work will enable various optical and electrochemical studies at a few-molecules-thick level.

11.
Nano Lett ; 19(12): 9062-9068, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710500

RESUMO

Ohmic absorption of light is an indication of a light-matter interaction within metals, where many interesting phenomena and application potentials can be found. To realize the ohmic absorption of light at long wavelengths, where metals are highly reflective, one can use a metamaterial absorber design to concentrate the electromagnetic field within a thin metal film. This concept has enabled thinning of perfect absorbers from a quarter-wave thickness to several tens of nanometers, greatly improving the utility and efficiency of light-metal interactions. Further improvements on the performance are expected if the absorption can be additionally focused laterally, which is a possibility not yet explored. In this study, we report that nanoslot antennas can be a unique ohmic absorber of the low-frequency radiations, where it can incorporate 70% of incident light to ohmic absorption, focused laterally onto 1% of the unit cell area. The inductive field that drives both field enhancement and ohmic absorption is localized within a skin depth distance from the slots with amplitude being as large as 30% of the incident field. Mode-matching calculations and terahertz spectroscopy measurements confirm the inductive and localized nature of the absorption. The strong confinement of the inductive field and of the resulting ohmic absorption is expected to open a new venue in nanocalorimetry, optical nonlinearities of metals, and bolometer applications.

12.
Sci Rep ; 9(1): 15025, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636309

RESUMO

Various material properties change considerably when material is thinned down to nanometer thicknesses. Accordingly, researchers have been trying to obtain homogeneous thin films with nanometer thickness but depositing homogeneous few nanometers thick gold film is challenging as it tends to form islands rather than homogenous film. Recently, studies have revealed that treating the substrate with an organic buffer, (3-mercaptopropyl) trimethoxysilane (MPTMS) enables deposition of ultra-thin gold film having thickness as low as 5 nm. Different aspects of MPTMS treatment for ultra-thin gold films like its effect on the structure and optical properties at visible wavelengths have been investigated. However, the effect of the MPTMS treatment on electrical conductivity of ultra-thin gold film at terahertz frequency remains unexplored. Here, we measure the complex conductivity of nanometer-thick gold films deposited onto an MPTMS-coated silicon substrate using terahertz time-domain spectroscopy. Following the MPTMS treatment of the substrate, the conductivity of the films was found to increase compared to those deposited onto uncoated substrate for gold films having the thickness less than 11 nm. We observed 5-fold enhancement in the conductivity for a 7 nm-thick gold film. We also demonstrate the fabrication of nanoslot-antenna arrays in 8.2-nm-thick gold films. The nanoslot-antenna with MPTMS coating has resonance at around 0.5 THz with an electric field enhancement of 44, whereas the nanoslot-antenna without MPTMS coating does not show resonant properties. Our results demonstrate that gold films deposited onto MPTMS-coated silicon substrates are promising advanced materials for fabricating ultra-thin terahertz plasmonic devices.

13.
Sci Rep ; 8(1): 7762, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773858

RESUMO

Plasmon-mediated polymerization has been intensively studied for various applications including nanolithography, near-field mapping, and selective functionalization. However, these studies have been limited from the near-infrared to the ultraviolet regime. Here, we report a resist polymerization using intense terahertz pulses and various nanoantennas. The resist is polymerized near the nanoantennas, where giant field enhancement occurs. We experimentally show that the physical origin of the cross-linking is a terahertz electron emission from the nanoantenna, rather than multiphoton absorption. Our work extends nano-photochemistry into the terahertz frequencies.

14.
Sci Rep ; 8(1): 2751, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426882

RESUMO

Slot antennas have been exploited as important building blocks of optical magnetism because their radiations are invoked by the magnetic fields along the axes, as vectorial Babinet principle predicts. However, optical magnetism of a few-nanometer-width slit, for which fascinating applications are found due to the colossal field enhancement but Babinet principle fails due to the nonnegligible thickness, has not been investigated. In this paper, we demonstrated that the magnetic field plays a dominant role in light transmission through a 5-nm slit on a 150-nm-thick gold film. The 5-nm slit was fabricated by atomic layer lithography, and the transmission was investigated for various incident angles by experiment and simulation at 785-nm wavelength. We found that, due to the deep subwavelength gap width, the transmission has the same incident angle dependence as the tangential magnetic field on the metal surface and this magnetic nature of a nanogap holds up to ~100-nm width. Our analysis establishes conditions for nanogap optical magnetism and suggests new possibilities in realizing magnetic-field-driven optical nonlinearities.

15.
Opt Express ; 23(11): 14937-45, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072850

RESUMO

We present a new and versatile technique of self-assembly lithography to fabricate a large scale Cadmium selenide quantum dots-silver nanogap metamaterials. After optical and electron microscopic characterizations of the metamaterials, we performed spatially resolved photoluminescence transmission measurements. We obtained highly quenched photoluminescence spectra compared to those from bare quantum dots film. We then quantified the quenching in terms of an average photoluminescence enhancement factor. A finite difference time domain simulation was performed to understand the role of an electric field enhancement in the nanogap over this quenching. Finally, we interpreted the mechanism of the photoluminescence quenching and proposed fabrication method of new metamaterials using our technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA