Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Artif Cells Nanomed Biotechnol ; 52(1): 250-260, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38687561

RESUMO

Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and Hordeum vulgare (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (Eubacterium limosum, Eggerthella sp. SDG-2, Alistipes indistinctus YIT 12060, Odoribacter laneus YIT 12061, Paraprevotella clara YIT 11840, Paraprevotella xylaniphila YIT 11841) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.


Assuntos
Microbioma Gastrointestinal , Hordeum , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hordeum/microbiologia , Hordeum/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Transdução de Sinais/efeitos dos fármacos , Camundongos , Mapas de Interação de Proteínas , Humanos
2.
Clin Transl Sci ; 17(3): e13778, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515346

RESUMO

Persea americana fruit (PAF) is a favorable nutraceutical resource that comprises diverse unsaturated fatty acids (UFAs). UFAs are significant dietary supplementation, as they relieve metabolic disorders, including obesity (OB). In another aspect, this study was focused on the anti-OB efficacy of the non-fatty acids (NFAs) in PAF through network pharmacology (NP). Natural product activity & species source (NPASS), SwissADME, similarity ensemble approach (SEA), Swiss target prediction (STP), DisGeNET, and online Mendelian inheritance in man (OMIM) were utilized to gather significant molecules and its targets. The crucial targets were adopted to construct certain networks: protein-protein interaction (PPI), PAF-signaling pathways-targets-compounds (PSTC) networks, a bubble chart, molecular docking assay (MDA), and density function theory (DFT). Finally, the toxicities of the key compounds were validated by ADMETlab 2.0 platform. All 41 compounds in PAF conformed to Lipinski's rule, and the key 31 targets were identified between OB and PAF. On the bubble chart, PPAR signaling pathway had the highest rich factor, suggesting that the pathway might be an agonism for anti-OB. Conversely, estrogen signaling pathway had the lowest rich factor, indicating that the mechanism might be antagonism against OB. Likewise, the PSTC network represented that AKT1 had the greatest degree value. The MDA results showed that AKT1-gamma-tocopherol, PPARA-fucosterol, PPARD-stigmasterol, (PPARG)-fucosterol, (NR1H3)-campesterol, and ILK-alpha-tocopherol formed the most stable conformers. The DFT represented that the five molecules might be promising agents via multicomponent targeting. Overall, this study suggests that the NFAs in PAF might play important roles against OB.


Assuntos
Frutas , Persea , Humanos , Simulação de Acoplamento Molecular , Bioensaio , Ácidos Graxos , Obesidade/tratamento farmacológico
3.
Artigo em Inglês | MEDLINE | ID: mdl-38467925

RESUMO

Diarrhea, a common gastrointestinal symptom in health problems, is highly associated with gut dysbiosis. The purpose of this study is to demonstrate the effect of multistrain probiotics (Sensi-Biome) on diarrhea from the perspective of the microbiome-neuron axis. Sensi-Biome (Lactiplantibacillus plantarum, Bifidobacterium animalis subsp. lactis, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium bifidum, and Lactococcus lactis) was administered in a 4% acetic acid-induced diarrhea rat model at concentrations of 1 × 108 (G1), 1 × 109 (G2), and 1 × 1010 CFU/0.5 mL (G3). Diarrhea-related parameters, inflammation-related cytokines, and stool microbiota analysis by 16S rRNA were evaluated. A targeted and untargeted metabolomics approach was used to analyze the cecum samples using liquid chromatography and orbitrap mass spectrometry. The stool moisture content (p < 0.001), intestinal movement rate (p < 0.05), and pH (p < 0.05) were significantly recovered in G3. Serotonin levels were decreased in the multistrain probiotics groups. The inflammatory cytokines, serotonin, and tryptophan hydroxylase expression were improved in the Sensi-Biome groups. At the phylum level, Sensi-Biome showed the highest relative abundance of Firmicutes. Short-chain fatty acids including butyrate, iso-butyrate, propionate, and iso-valeric acid were significantly modified in the Sensi-Biome groups. Equol and oleamide were significantly improved in the multistrain probiotics groups. In conclusion, Sensi-Biome effectively controls diarrhea by modulating metabolites and the serotonin pathway.

4.
Gut Microbes ; 16(1): 2307568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299316

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, and its prevalence has increased worldwide in recent years. Additionally, there is a close relationship between MASLD and gut microbiota-derived metabolites. However, the mechanisms of MASLD and its metabolites are still unclear. We demonstrated decreased indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA) in the feces of patients with hepatic steatosis compared to healthy controls. Here, IPA and IAA administration ameliorated hepatic steatosis and inflammation in an animal model of WD-induced MASLD by suppressing the NF-κB signaling pathway through a reduction in endotoxin levels and inactivation of macrophages. Bifidobacterium bifidum metabolizes tryptophan to produce IAA, and B. bifidum effectively prevents hepatic steatosis and inflammation through the production of IAA. Our study demonstrates that IPA and IAA derived from the gut microbiota have novel preventive or therapeutic potential for MASLD treatment.


Assuntos
Bifidobacterium bifidum , Fígado Gorduroso , Microbioma Gastrointestinal , Doenças Metabólicas , Animais , Humanos , Metabolismo dos Lipídeos , Indóis/farmacologia , Fígado Gorduroso/tratamento farmacológico , Inflamação/tratamento farmacológico
5.
Nano Lett ; 24(6): 1882-1890, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38198287

RESUMO

Understanding the spatial organization of membrane proteins is crucial for unraveling key principles in cell biology. The reaction-diffusion model is commonly used to understand biochemical patterning; however, applying reaction-diffusion models to subcellular phenomena is challenging because of the difficulty in measuring protein diffusivity and interaction kinetics in the living cell. In this work, we investigated the self-organization of the plasmalemma vesicle-associated protein (PLVAP), which creates regular arrangements of fenestrated ultrastructures, using single-molecule tracking. We demonstrated that the spatial organization of the ultrastructures is associated with a decrease in the association rate by actin destabilization. We also constructed a reaction-diffusion model that accurately generates a hexagonal array with the same 130 nm spacing as the actual scale and informs the stoichiometry of the ultrastructure, which can be discerned only through electron microscopy. Through this study, we integrated single-molecule experiments and reaction-diffusion modeling to surpass the limitations of static imaging tools and proposed emergent properties of the PLVAP ultrastructure.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Difusão , Modelos Biológicos
6.
Hepatol Int ; 18(2): 486-499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37000389

RESUMO

BACKGROUND AND AIM: The prevalence and severity of alcoholic liver disease (ALD) are increasing. The incidence of alcohol-related cirrhosis has risen up to 2.5%. This study aimed to identify novel metabolite mechanisms involved in the development of ALD in patients. The use of gut microbiome-derived metabolites is increasing in targeted therapies. Identifying metabolic compounds is challenging due to the complex patterns that have long-term effects on ALD. We investigated the specific metabolite signatures in ALD patients. METHODS: This study included 247 patients (heathy control, HC: n = 62, alcoholic fatty liver, AFL; n = 25, alcoholic hepatitis, AH; n = 80, and alcoholic cirrhosis, AC, n = 80) identified, and stool samples were collected. 16S rRNA sequencing and metabolomics were performed with MiSeq sequencer and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS), respectively. The untargeted metabolites in AFL, AH, and AC samples were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Metabolic network classifiers were used to predict the pathway expression of the AFL, AH, and AC stages. RESULTS: The relative abundance of Proteobacteria was increased and the abundance of Bacteroides was decreased in ALD samples (p = 0.001) compared with that in HC samples. Fusobacteria levels were higher in AH samples (p = 0.0001) than in HC samples. Untargeted metabolomics was applied to quantitatively screen 103 metabolites from each stool sample. Indole-3-propionic acid levels are significantly lower in AH and AC (vs. HC, p = 0.001). Indole-3-lactic acid (ILA: p = 0.04) levels were increased in AC samples. AC group showed an increase in indole-3-lactic acid (vs. HC, p = 0.040) level. Compared with that in HC samples, the levels of short-chain fatty acids (SCFAs: acetic acid, butyric acid, propionic acid, iso-butyric acid, and iso-valeric acid) and bile acids (lithocholic acids) were significantly decreased in AC. The pathways of linoleic acid metabolism, indole compounds, histidine metabolism, fatty acid degradation, and glutamate metabolism were closely associated with ALD metabolism. CONCLUSIONS: This study identified that microbial metabolic dysbiosis is associated with ALD-related metabolic dysfunction. The SCFAs, bile acids, and indole compounds were depleted during ALD progression. CLINICAL TRIAL: Clinicaltrials.gov, number NCT04339725.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Humanos , Propionatos , RNA Ribossômico 16S/genética , Cirrose Hepática Alcoólica , Indóis , Ácidos e Sais Biliares
7.
Gut Microbes ; 15(2): 2281014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37988132

RESUMO

The liver is rich in innate immune cells, such as natural killer (NK) cells, natural killer T cells, and Kupffer cells associated with the gut microbiome. These immune cells are dysfunctional owing to alcohol consumption. However, there is insufficient data on the association between immune cells and gut microbiome in alcoholic liver disease (ALD). Therefore, the purpose of this study was to evaluate the effects of probiotic strains on NK cells in ALD patients. In total, 125 human blood samples [control (n = 22), alcoholic hepatitis (n = 43), and alcoholic cirrhosis (n = 60]) were collected for flow cytometric analysis. C57BL/6J mice were divided into four groups (normal, EtOH-fed, and 2 EtOH+strain groups [Phocaeicola dorei and Lactobacillus helveticus]). Lymphocytes isolated from mouse livers were analyzed using flow cytometry. The frequency of NK cells increased in patients with alcoholic hepatitis and decreased in patients with alcoholic cirrhosis. The expression of NKp46, an NK cell-activating receptor, was decreased in patients with alcoholic hepatitis and increased in patients with alcoholic cirrhosis compared to that in the control group. The number of cytotoxic CD56dimCD16+ NK cells was significantly reduced in patients with alcoholic cirrhosis. We tested the effect of oral administration P. dorei and L. helveticus in EtOH-fed mice. P. dorei and L. helveticus improved liver inflammation and intestinal barrier damage caused by EtOH supply and increased NK cell activity. Therefore, these observations suggest that the gut microbiome may ameliorate ALD by regulating immune cells.


Assuntos
Microbioma Gastrointestinal , Hepatite Alcoólica , Hepatopatias Alcoólicas , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Cirrose Hepática Alcoólica , Células Matadoras Naturais , Etanol
9.
Front Microbiol ; 14: 1174968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333632

RESUMO

Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.

10.
Artif Cells Nanomed Biotechnol ; 51(1): 217-232, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37129458

RESUMO

We comprised metabolites of gut microbiota (GM; endogenous species) and dietary plant-derived natural flavonoids (DPDNFs; exogenous species) were known as potent effectors against non-alcoholic fatty liver disease (NAFLD) via network pharmacology (NP). The crucial targets against NAFLD were identified via GM and DPDNFs. The protein interaction (PPI), bubble chart and networks of GM or natural products- metabolites-targets-key signalling (GNMTK) pathway were described via R Package. Furthermore, the molecular docking test (MDT) to verify the affinity was performed between metabolite(s) and target(s) on a key signalling pathway. On the networks of GNMTK, Enterococcus sp. 45, Escherichia sp.12, Escherichia sp.33 and Bacterium MRG-PMF-1 as key microbiota; flavonoid-rich products as key natural resources; luteolin and myricetin as key metabolites (or dietary flavonoids); AKT Serine/Threonine Kinase 1 (AKT1), CF Transmembrane conductance Regulator (CFTR) and PhosphoInositide-3-Kinase, Regulatory subunit 1 (PIK3R1) as key targets are promising components to treat NAFLD, by suppressing cyclic Adenosine MonoPhosphate (cAMP) signalling pathway. This study shows that components (microbiota, metabolites, targets and a key signalling pathway) and DPDNFs can exert combinatorial pharmacological effects against NAFLD. Overall, the integrated pharmacological approach sheds light on the relationships between GM and DPDNFs.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Flavonoides/farmacologia
11.
Life Sci ; 322: 121626, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003543

RESUMO

AIMS: Nonalcoholic fatty liver disease (NAFLD) is becoming more common and severe. Individuals with NAFLD have an altered composition of gut- microbial metabolites. We used metabolomics profiling to identify microbial metabolites that could indicate gut-liver metabolic severity. Noninvasive biomarkers are required for NAFLD, especially for patients at high risk of disease progression. MAIN METHODS: We compared the stool metabolomes, untargeted metabolomics, and clinical data of 80 patients. Patients with nonalcoholic fatty liver (NAFL: n = 16), nonalcoholic steatohepatitis (NASH: n = 26), and cirrhosis (n = 19) and healthy control individuals (HC: n = 19) were enrolled. The identified metabolites in NAFLD were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS) were used to analyze metabolites. KEY FINDINGS: Untargeted metabolomics was used to identify and quantify 103 metabolites. Principal component analysis (PCA) was used to assess the metabolic discrimination of NAFL, NASH, and cirrhosis. Short-chain fatty acids (SCFA) levels were significantly lower in NAFLD patients, including those of acetate (p = 0.03), butyrate (p = 0.0008), and propionate. The stool cholic acid (p = 0.001) level was significantly increased in NAFLD patients. Palmitoylcarnitine and l-carnitine levels were significantly increased in NASH and cirrhosis patients. The phenotypic expression of these metabolites was linked to ß-oxidation. SIGNIFICANCE: We demonstrated a distinct metabolome profile in NAFLD patients with NAFL, NASH, and cirrhosis. We also discovered that the expression of certain metabolites and metabolic pathways was linked to NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolômica/métodos , Fenótipo , Biomarcadores/metabolismo , Cirrose Hepática
12.
J Transl Med ; 21(1): 263, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069607

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treatment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy through network pharmacology. METHODS: We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related to SMs of AS and GM. The final targets were selected on NAFLD-related targets, which was considered as crucial targets. The protein-protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signaling pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemical properties and toxicity in silico platform. RESULTS: The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor A (VEGFA) was a key target in PPI network analysis. The PI3K-Akt signaling pathway was the uppermost mechanism associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K-Akt signaling pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA-myricetin, or quercetin, GSK3B-myricetin, IL2-diosgenin complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1-vestitol formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were no hurdles to develop into drugs devoid of its toxicity. CONCLUSION: In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent synergistic effects against NAFLD, dampening PI3K-Akt signaling pathway. This work provides the importance of dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological mechanisms of combinatorial application (AS and GM) against NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Avena , Simulação de Acoplamento Molecular , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator A de Crescimento do Endotélio Vascular
13.
Artif Cells Nanomed Biotechnol ; 51(1): 1-12, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36562095

RESUMO

We intended to identify favourable metabolite(s) and pharmacological mechanism(s) of gut microbiota (GM) for liver regeneration (LR) through network pharmacology. We utilized the gutMGene database to obtain metabolites of GM, and targets associated with metabolites as well as LR-related targets were identified using public databases. Furthermore, we performed a molecular docking assay on the active metabolite(s) and target(s) to verify the network pharmacological concept. We mined a total of 208 metabolites in the gutMGene database and selected 668 targets from the SEA (1,256 targets) and STP (947 targets) databases. Finally, 13 targets were identified between 61 targets and the gutMGene database (243 targets). Protein-protein interaction network analysis showed that AKT1 is a hub target correlated with 12 additional targets. In this study, we describe the potential microbe from the microbiota (E. coli), chemokine signalling pathway, AKT1 and myricetin that accelerate LR, providing scientific evidence for further clinical trials.


Assuntos
Microbioma Gastrointestinal , Escherichia coli , Regeneração Hepática , Simulação de Acoplamento Molecular , Farmacologia em Rede
14.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139478

RESUMO

The metabolites produced by the gut microbiota have been reported as crucial agents against obesity; however, their key targets have not been revealed completely in complex microbiome systems. Hence, the aim of this study was to decipher promising prebiotics, probiotics, postbiotics, and more importantly, key target(s) via a network pharmacology approach. First, we retrieved the metabolites related to gut microbes from the gutMGene database. Then, we performed a meta-analysis to identify metabolite-related targets via the similarity ensemble approach (SEA) and SwissTargetPrediction (STP), and obesity-related targets were identified by DisGeNET and OMIM databases. After selecting the overlapping targets, we adopted topological analysis to identify core targets against obesity. Furthermore, we employed the integrated networks to microbiota-substrate-metabolite-target (MSMT) via R Package. Finally, we performed a molecular docking test (MDT) to verify the binding affinity between metabolite(s) and target(s) with the Autodock 1.5.6 tool. Based on holistic viewpoints, we performed a filtering step to discover the core targets through topological analysis. Then, we implemented protein-protein interaction (PPI) networks with 342 overlapping target, another subnetwork was constructed with the top 30% degree centrality (DC), and the final core networks were obtained after screening the top 30% betweenness centrality (BC). The final core targets were IL6, AKT1, and ALB. We showed that the three core targets interacted with three other components via the MSMT network in alleviating obesity, i.e., four microbiota, two substrates, and six metabolites. The MDT confirmed that equol (postbiotics) converted from isoflavone (prebiotics) via Lactobacillus paracasei JS1 (probiotics) can bind the most stably on IL6 (target) compared with the other four metabolites (3-indolepropionic acid, trimethylamine oxide, butyrate, and acetate). In this study, we demonstrated that the promising substate (prebiotics), microbe (probiotics), metabolite (postbiotics), and target are suitable for obsesity treatment, providing a microbiome basis for further research.


Assuntos
Microbioma Gastrointestinal , Obesidade , Prebióticos , Probióticos , Butiratos , Equol , Humanos , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Obesidade/terapia
15.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012266

RESUMO

Hepatic encephalopathy (HE) is a serious complication of cirrhosis that causes neuropsychiatric problems, such as cognitive dysfunction and movement disorders. The link between the microbiota and the host plays a key role in the pathogenesis of HE. The link between the gut microbiome and disease can be positively utilized not only in the diagnosis area of HE but also in the treatment area. Probiotics and prebiotics aim to resolve gut dysbiosis and increase beneficial microbial taxa, while fecal microbiota transplantation aims to address gut dysbiosis through transplantation (FMT) of the gut microbiome from healthy donors. Antibiotics, such as rifaximin, aim to improve cognitive function and hyperammonemia by targeting harmful taxa. Current treatment regimens for HE have achieved some success in treatment by targeting the gut microbiota, however, are still accompanied by limitations and problems. A focused approach should be placed on the establishment of personalized trial designs and therapies for the improvement of future care. This narrative review identifies factors negatively influencing the gut-hepatic-brain axis leading to HE in cirrhosis and explores their relationship with the gut microbiome. We also focused on the evaluation of reported clinical studies on the management and improvement of HE patients with a particular focus on microbiome-targeted therapy.


Assuntos
Microbioma Gastrointestinal , Encefalopatia Hepática , Probióticos , Disbiose/complicações , Disbiose/terapia , Transplante de Microbiota Fecal/efeitos adversos , Fibrose , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/terapia , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/terapia , Probióticos/uso terapêutico
16.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35955885

RESUMO

Alcohol consumption is a global healthcare problem. Chronic alcohol consumption generates a wide spectrum of hepatic lesions, the most characteristic of which are steatosis, hepatitis, fibrosis, and cirrhosis. Alcoholic liver diseases (ALD) refer to liver damage and metabolomic changes caused by excessive alcohol intake. ALD present several clinical stages of severity found in liver metabolisms. With increased alcohol consumption, the gut microbiome promotes a leaky gut, metabolic dysfunction, oxidative stress, liver inflammation, and hepatocellular injury. Much attention has focused on ALD, such as alcoholic fatty liver (AFL), alcoholic steatohepatitis (ASH), alcoholic cirrhosis (AC), hepatocellular carcinoma (HCC), a partnership that reflects the metabolomic significance. Here, we report on the global function of inflammation, inhibition, oxidative stress, and reactive oxygen species (ROS) mechanisms in the liver biology framework. In this tutorial review, we hypothetically revisit therapeutic gut microbiota-derived alcoholic oxidative stress, liver inflammation, inflammatory cytokines, and metabolic regulation. We summarize the perspective of microbial therapy of genes, gut microbes, and metabolic role in ALD. The end stage is liver transplantation or death. This review may inspire a summary of the gut microbial genes, critical inflammatory molecules, oxidative stress, and metabolic routes, which will offer future promising therapeutic compounds in ALD.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso Alcoólico , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Microbiota , Carcinoma Hepatocelular/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Humanos , Inflamação/patologia , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Neoplasias Hepáticas/metabolismo
17.
Curr Issues Mol Biol ; 44(7): 3253-3266, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35877448

RESUMO

Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we analyzed the significant metabolites of microbiota against AFLD via the network pharmacology concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially, AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized for protein-protein interaction (PPI) networks and signaling pathway analyses. Then, we performed a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4); however, CYP1A2 had no associations with the other targets. The bubble chart showed that the PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising agent to bind stably to RELA (known as NF-Κb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM networks. In conclusion, we showed that the Icaritin-RELA complex on the PI3K-Akt signaling pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing crucial evidence for further research.

18.
Front Med (Lausanne) ; 9: 841281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615096

RESUMO

The gut microbiome and microbial metabolomic influences on liver diseases and their diagnosis, prognosis, and treatment are still controversial. Research studies have provocatively claimed that the gut microbiome, metabolomics understanding, and microbial metabolite screening are key approaches to understanding liver cancer and liver diseases. An advance of logical innovations in metabolomics profiling, the metabolome inclusion, challenges, and the reproducibility of the investigations at every stage are devoted to this domain to link the common molecules across multiple liver diseases, such as fatty liver, hepatitis, and cirrhosis. These molecules are not immediately recognizable because of the huge underlying and synthetic variety present inside the liver cellular metabolome. This review focuses on microenvironmental metabolic stimuli in the gut-liver axis. Microbial small-molecule profiling (i.e., semiquantitative monitoring, metabolic discrimination, target profiling, and untargeted profiling) in biological fluids has been incompletely addressed. Here, we have reviewed the differential expression of the metabolome of short-chain fatty acids (SCFAs), tryptophan, one-carbon metabolism and bile acid, and the gut microbiota effects are summarized and discussed. We further present proof-of-evidence for gut microbiota-based metabolomics that manipulates the host's gut or liver microbes, mechanosensitive metabolite reactions and potential metabolic pathways. We conclude with a forward-looking perspective on future attention to the "dark matter" of the gut microbiota and microbial metabolomics.

19.
Biomedicines ; 10(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35327352

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered to be a significant health threat globally, and has attracted growing concern in the research field of liver diseases. NAFLD comprises multifarious fatty degenerative disorders in the liver, including simple steatosis, steatohepatitis and fibrosis. The fundamental pathophysiology of NAFLD is complex and multifactor-driven. In addition to viruses, metabolic syndrome and alcohol, evidence has recently indicated that the microbiome is related to the development and progression of NAFLD. In this review, we summarize the possible microbiota-based therapeutic approaches and highlight the importance of establishing the diagnosis of NAFLD through the different spectra of the disease via the gut-liver axis.

20.
Microorganisms ; 10(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35208742

RESUMO

Over the past decade, scientific evidence for the properties, functions, and beneficial effects of probiotics for humans has continued to accumulate. Interest in the use of probiotics for humans has increased tremendously. Among various microorganisms, probiotics using bacteria have been widely studied and commercialized, and, among them, Lactobacillus is representative. This genus contains about 300 species of bacteria (recently differentiated into 23 genera) and countless strains have been reported. They improved a wide range of diseases including liver disease, gastrointestinal diseases, respiratory diseases, and autoimmune diseases. Here, we intend to discuss in depth the genus Lactobacillus as a representative probiotic for chronic liver diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA