Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Adv ; 10(17): eadm7315, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657066

RESUMO

Nanoconfined waters exhibit low static permittivity mainly due to interfacial effects that span about one nanometer. The characteristic length scale may be much longer in the terahertz (THz) regime where long-range collective dynamics occur; however, the THz dynamics have been largely unexplored because of the lack of a robust platform. Here, we use metallic loop nanogaps to sharply enhance light-matter interactions and precisely measure real and imaginary THz refractive indices of nanoconfined water at gap widths ranging from 2 to 20 nanometers, spanning mostly interfacial waters all the way to quasi-bulk waters. We find that, in addition to the well-known interfacial effect, the confinement effect also contributes substantially to the decrease in the complex refractive indices of the nanoconfined water by cutting off low-energy vibrational modes, even at gap widths as large as 10 nanometers. Our findings provide valuable insights into the collective dynamics of water molecules which is crucial to understanding water-mediated processes.

2.
Nat Commun ; 15(1): 1220, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336842

RESUMO

Swimming in low-Reynolds-number fluids requires the breaking of time-reversal symmetry and centrosymmetry. Microswimmers, often with asymmetric shapes, exhibit nonreciprocal motions or exploit nonequilibrium processes to propel. The role of the surrounding fluid has also attracted attention because viscoelastic, non-Newtonian, and anisotropic properties of fluids matter in propulsion efficiency and navigation. Here, we experimentally demonstrate that anisotropic fluids, nematic liquid crystals (NLC), can make a pulsating spherical bubble swim despite its centrosymmetric shape and time-symmetric motion. The NLC breaks the centrosymmetry by a deformed nematic director field with a topological defect accompanying the bubble. The nematodynamics renders the nonreciprocity in the pulsation-induced fluid flow. We also report speed enhancement by confinement and the propulsion of another symmetry-broken bubble dressed by a bent disclination. Our experiments and theory propose another possible mechanism of moving bodies in complex fluids by spatiotemporal symmetry breaking.

3.
Soft Matter ; 20(6): 1361-1368, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38252544

RESUMO

We study the chiral symmetry breaking and metastability of confined nematic lyotropic chromonic liquid crystals (LCLCs) with and without chiral dopants. The isotropic-nematic coexistence phase of the LCLC renders two confining geometries: sessile isotropic (I) droplets surrounded by the nematic (N) phase and sessile nematic droplets immersed in the isotropic background. In the achiral system with no dopants, LCLC's elastic anisotropy and topological defects induce a spontaneous twist deformation to lower the energetic penalty of splay deformation, resulting in spiral optical textures under crossed polarizers both in the I-in-N and N-in-I systems. While the achiral system exhibits both handednesses with an equal probability, a small amount of the chiral dopant breaks the balance. Notably, in contrast to the homochiral configuration of a chirally doped LCLC in the bulk, the spiral texture of the disfavored handedness appears with a finite probability both in the I-in-N and N-in-I systems. We propose director field models explaining how chiral symmetry breaking arises by the energetics and the opposite-twist configurations exist as meta-stable structures in the energy landscape. These findings help us create and control chiral structures using confined LCs with large elastic anisotropy.

4.
Soft Matter ; 18(23): 4360-4371, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608219

RESUMO

Liquid crystalline phases of matter often exhibit visually stunning patterns or textures. Mostly, these liquid crystal (LC) configurations are uniquely determined by bulk LC elasticity, surface anchoring conditions, and confinement geometry. Here, we experimentally explore defect textures of the smectic LC phase in unique confining geometries with variable curvature. We show that a complex range of director configurations can arise from a single system, depending on sample processing procedures. Specifically, we report on LC textures in Janus drops comprised of silicone oil and 8CB in its smectic-A LC phase. The Janus droplets were made in aqueous suspension using solvent-induced phase separation. After drop creation, smectic layers form in the LC compartment, but their self-assembly is frustrated by the need to accommodate both the bowl-shaped cavity geometry and homeotropic (perpendicular) anchoring conditions at boundaries. A variety of stable and metastable smectic textures arise, including focal conic domains, dislocation rings, and undulations. We experimentally characterize their stabilities and follow their spatiotemporal evolution. Overall, a range of fabrication kinetics produce very different intermediate and final states. The observations elucidate assembly mechanisms and suggest new routes for fabrication of complex soft material structures in Janus drops and other confinement geometries.

5.
Nat Mater ; 21(3): 317-324, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241823

RESUMO

The dielectric tensor is a physical descriptor of fundamental light-matter interactions, characterizing anisotropic materials with principal refractive indices and optic axes. Despite its importance in scientific and industrial applications ranging from material science to soft matter physics, the direct measurement of the three-dimensional dielectric tensor has been limited by the vectorial and inhomogeneous nature of light scattering from anisotropic materials. Here, we present a dielectric tensor tomographic approach to directly measure dielectric tensors of anisotropic structures including the spatial variations of principal refractive indices and directors. The anisotropic structure is illuminated with a polarized plane wave with various angles and polarization states. Then, the scattered fields are holographically measured and converted into vectorial diffracted field components. Finally, by inversely solving a vectorial wave equation, the three-dimensional dielectric tensor is reconstructed. Using this approach, we demonstrate quantitative tomographic measurements of various nematic liquid-crystal structures and their fast three-dimensional non-equilibrium dynamics.


Assuntos
Cristais Líquidos , Refratometria , Anisotropia , Cristais Líquidos/química , Refratometria/métodos , Tomografia Computadorizada por Raios X
6.
Proc Natl Acad Sci U S A ; 118(33)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34373332

RESUMO

Our study of cholesteric lyotropic chromonic liquid crystals in cylindrical confinement reveals the topological aspects of cholesteric liquid crystals. The double-twist configurations we observe exhibit discontinuous layering transitions, domain formation, metastability, and chiral point defects as the concentration of chiral dopant is varied. We demonstrate that these distinct layer states can be distinguished by chiral topological invariants. We show that changes in the layer structure give rise to a chiral soliton similar to a toron, comprising a metastable pair of chiral point defects. Through the applicability of the invariants we describe to general systems, our work has broad relevance to the study of chiral materials.

7.
Small ; 17(23): e2100797, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33978996

RESUMO

A hemolysis-free and highly efficient plasma separation platform enabled by enhanced diamagnetic repulsion of blood cells in undiluted whole blood is reported. Complete removal of blood cells from blood plasma is achieved by supplementing blood with superparamagnetic iron oxide nanoparticles (SPIONs), which turns the blood plasma into a paramagnetic condition, and thus, all blood cells are repelled by magnets. The blood plasma is successfully collected from 4 mL of blood at flow rates up to 100 µL min-1 without losing plasma proteins, platelets, or exosomes with 83.3±1.64% of plasma volume recovery, which is superior over the conventional microfluidic methods. The theoretical model elucidates the diamagnetic repulsion of blood cells considering hematocrit-dependent viscosity, which allows to determine a range of optimal flow rates to harvest platelet-rich plasma and platelet-free plasma. For clinical validations, it is demonstrated that the method enables the greater recovery of bacterial DNA from the infected blood than centrifugation and the immunoassay in whole blood without prior plasma separation.


Assuntos
Células Sanguíneas , Plasma , Biomarcadores , Separação Celular , Hemólise , Humanos , Microfluídica
8.
ACS Appl Mater Interfaces ; 13(13): 15837-15846, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33689266

RESUMO

Patterning wrinkles on three-dimensional curved or enclosed surfaces can be challenging due to difficulties in application of uniform films and stresses on such structures. In this study, we demonstrate a simple one-step wrinkle-formation method on various hydrogel structures utilizing the oil-water interfaces. By diffusion of the photoinitiator from the oil phase to the prepolymer solution in water through the interface, a characteristic cross-linking gradient is set up in the hydrogel. Then, after photopolymerization, we observe diverse patterns of wrinkles upon changing the concentration of the hydrogel or photoinitiator. As the wrinkle formation via photoinitiator diffusion through the interface requires only UV exposure for polymerization, while taking advantage of the oil-water interfacial tension, wrinkles can be developed easily on various curved structures. In addition, we illustrate the formation of wrinkles on surfaces underneath another layer of polymer or on completely enclosed surfaces, which is difficult with conventional methods. We expect that our results will lead to production of novel microstructures and provide a platform for studying the morphogenesis of wrinkles found in nature such as in curved substrates and multilayers.

9.
Nat Commun ; 11(1): 5221, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060604

RESUMO

Hydrodynamic interactions play a role in synchronized motions of coupled oscillators in fluids, and understanding the mechanism will facilitate development of applications in fluid mechanics. For example, synchronization phenomenon in two-phase flow will benefit the design of future microfluidic devices, allowing spatiotemporal control of microdroplet generation without additional integration of control elements. In this work, utilizing a characteristic oscillation of adjacent interfaces between two immiscible fluids in a microfluidic platform, we discover that the system can act as a coupled oscillator, notably showing spontaneous in-phase synchronization of droplet breakup. With this observation of in-phase synchronization, the coupled droplet generator exhibits a complete set of modes of coupled oscillators, including out-of-phase synchronization and nonsynchronous modes. We present a theoretical model to elucidate how a negative feedback mechanism, tied to the distance between the interfaces, induces the in-phase synchronization. We also identify the criterion for the transition from in-phase to out-of-phase oscillations.

10.
J Phys Chem B ; 124(41): 9246-9254, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32960600

RESUMO

We study the effect of purification and impurities on the self-assembly and phase behavior of lyotropic chromonic liquid crystals (LCLCs). LCLC molecules in water stack to form aggregates; then, the elongated nanoaggregates align to make liquid crystalline phases. Utilizing multiple experimental techniques, we unveil impurities in commercial Sunset Yellow FCF (SSY), a representative LCLC, and how the precipitation-based purification promotes the formation of the aggregates and mesophase. We further explore the roles of intrinsic impurities, i.e., byproducts of the SSY synthesis, whose molecular structures are almost identical to that of SSY but differ only in the number and position of sulfonate groups. Combining quantum chemical calculations of molecular structures and experimental investigation of aggregate structures and phase behavior, we propose that the impurities of the planar shapes behave as planar SSY, i.e., participating in aggregate formation, whereas the nonplanar one disrupts the nematic phase. These results highlight the critical roles of the impurities and deepen our understanding of self-assembled aggregates and their aligned mesophases.

11.
Phys Rev E ; 101(2-2): 029903, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168692

RESUMO

This corrects the article DOI: 10.1103/PhysRevE.100.012702.

12.
Phys Rev E ; 100(1-1): 012702, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499771

RESUMO

We investigate how chiral dopants affect the chiral symmetry breaking of lyotropic chromonic liquid crystals (LCLCs) focusing on the double-twist (DT) director configurations in a cylindrical capillary. LCLCs of unusual elastic properties tend to exhibit chiral director configurations under confinement despite the absence of intrinsic chirality. The DT director configuration in a cylindrical cavity with a degenerate planar anchoring, resulting from the large saddle-splay-to-twist elastic modulus ratio, is a representative example. Here we start by reexamining the DT configuration of nematic disodium cromoglycate in a cylindrical capillary and estimate the ratio of saddle splay to bend modulus K_{24}/K_{3}=0.5±0.1. Additionally, we study the DT configurations of the chiral nematic LCLCs with chiral dopants. The DT configuration becomes homochiral when the dopant concentration surpasses the critical concentration. We characterize these chiral DT configurations and provide a theoretical model on their energetics. Finally, we observe how the enantiomeric excess of chiral dopants determines the director configuration when dopants of two different handednesses are mixed.

13.
Soft Matter ; 15(30): 6127-6133, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31290906

RESUMO

We investigate the effects of poly(ethylene glycol) (PEG) doping on nematic lyotropic chromonic liquid crystals (LCLCs) confined in a cylindrical cavity. First, PEG added to Sunset Yellow (SSY) renders confining glass surfaces nemato-phobic by adsorption. We also confirm that the grafting of PEG to bare glass surfaces changes them from nemato-philic to nemato-phobic. This change in the wetting behavior affects how nematic director configurations form and relax. Additionally, we observe that PEG-doped nematic SSY retains the double-twist director configuration as in the PEG-free case. However, the PEG-doped nematic SSY is accompanied by unprecedented domain-wall-like defects and heterogeneity in the director configuration. We propose multiple hypotheses on how PEG changes the director configuration, including the formation of meta-stable director configurations.

14.
Soft Matter ; 14(44): 9005-9011, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30376031

RESUMO

This study introduces cylindrical nematic liquid crystal (LC) shells. Shells as confinement can provide soft matter with intriguing topology and geometry. Indeed, in spherical shells of LCs, rich defect structures have been reported. Avoiding the inherent Plateau-Rayleigh instability of cylindrical liquid-liquid interfaces, we realize the cylindrical nematic LC shell by two different methods: the phase separation in the nematic-isotropic coexistence phase and a cylindrical cavity with a glass rod suspended in the middle. Specifically, the director configurations of lyotropic chromonic LCs (LCLCs) in the cylindrical shell and their energetics are investigated theoretically and experimentally. Unusual elastic properties of LCLCs, i.e., a large saddle-splay modulus, and a shell geometry with both concave and convex curvatures, result in a double-twist director configuration.

15.
ACS Appl Mater Interfaces ; 9(21): 18355-18361, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28489345

RESUMO

Lyotropic chromonic liquid crystals (LCLCs) have been extensively studied because of the interesting structural characteristics of the linear aggregation of their plank-shaped molecules in aqueous solvents. We report a simple method to control the orientation of LCLCs such as Sunset Yellow (SSY), disodium cromoglycate (DSCG), and DNA by varying pulling speed of the top substrate and temperatures during shear flow induced experiment. Crystallized columns of LCLCs are aligned parallel and perpendicular to the shear direction, at fast and slow pulling speeds of the top substrate, respectively. On the basis of this result, we fabricated an orthogonally patterned film that can be used as an alignment layer for guiding rodlike liquid crystals (LCs) to generate both twisted and planar alignments simultaneously. Our resulting platform can provide a facile method to form multidirectional orientation of soft materials and biomaterials in a process of simple shearing and evaporation, which gives rise to potential patterning applications using LCLCs due to their unique structural characteristics.

16.
Soft Matter ; 13(5): 956-962, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28078333

RESUMO

Thin films that exhibit spatially heterogeneous swelling often buckle into the third dimension to minimize stress. These effects, in turn, offer a promising strategy to fabricate complex three-dimensional structures from two-dimensional sheets. Here we employ surface topography as a new means to guide buckling of swollen polymer bilayer films and thereby control the morphology of resulting three-dimensional objects. Topographic patterns are created on poly(dimethylsiloxane) (PDMS) films selectively coated with a thin layer of non-swelling parylene on different sides of the patterned films. After swelling in an organic solvent, various structures are formed, including half-pipes, helical tubules, and ribbons. We demonstrate these effects and introduce a simple geometric model that qualitatively captures the relationship between surface topography and the resulting swollen film morphologies. The model's limitations are also examined.

17.
Soft Matter ; 11(34): 6747-54, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26171829

RESUMO

This study introduces liquid crystal (LC) Janus droplets. We describe a process for the preparation of these droplets, which consist of nematic LC and polymer compartments. The process employs solvent-induced phase separation in emulsion droplets generated by microfluidics. The droplet morphology was systematically investigated and demonstrated to be sensitive to the surfactant concentration in the background phase, the compartment volume ratio, and the possible coalescence of multiple Janus droplets. Interestingly, the combination of a polymer and an anisotropic LC introduces new functionalities into Janus droplets, and these properties lead to unusual dynamical behaviors. The different densities and solubilities of the two compartments produce gravity-induced alignment, tumbling, and directional self-propelled motion of Janus droplets. LC Janus droplets with remarkable optical properties and dynamical behaviors thus offer new avenues for applications of Janus colloids and active soft matter.


Assuntos
Cristais Líquidos/química , Movimento (Física) , Emulsões , Hidrodinâmica
18.
Artigo em Inglês | MEDLINE | ID: mdl-26066106

RESUMO

An experimental and theoretical study of lyotropic chromonic liquid crystals (LCLCs) confined in cylinders with degenerate planar boundary conditions elucidates LCLC director configurations. When the Frank saddle-splay modulus is more than twice the twist modulus, the ground state adopts an inhomogeneous escaped-twisted configuration. Analysis of the configuration yields a large saddle-splay modulus, which violates Ericksen inequalities but not thermodynamic stability. Lastly, we observe point defects between opposite-handed domains, and we explain a preference for point defects over domain walls.

19.
Proc Natl Acad Sci U S A ; 112(15): E1837-44, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825733

RESUMO

We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment). Interestingly, achiral nematic LCs with comparatively small twist elastic moduli relieve bend and splay deformations by introducing twist deformations. In the resulting twisted and escaped radial (TER) configuration, LC directors are parallel to the cylindrical axis near the center, but to attain radial orientation near the capillary wall, they escape along the radius through bend and twist distortions. Chiral symmetry-breaking experiments in polymer-coated capillaries are carried out using Sunset Yellow FCF, a lyotropic chromonic LC with a small twist elastic constant. Its director configurations are investigated by polarized optical microscopy and explained theoretically with numerical calculations. A rich phenomenology of defects also arises from the degenerate bend/twist deformations of the TER configuration, including a nonsingular domain wall separating domains of opposite twist handedness but the same escape direction and singular point defects (hedgehogs) separating domains of opposite escape direction. We show the energetic preference for singular defects separating domains of opposite twist handedness compared with those of the same handedness, and we report remarkable chiral configurations with a double helix of disclination lines along the cylindrical axis. These findings show archetypally how simple boundary conditions and elastic anisotropy of confined materials lead to multiple symmetry breaking and how these broken symmetries combine to create a variety of defects.

20.
Langmuir ; 30(10): 2914-20, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24559290

RESUMO

We report on the homeotropic alignment of lyotropic chromonic liquid crystals (LCLCs). Homeotropic anchoring of LCLCs is difficult to achieve, and this challenge has limited development of applications for LCLCs. In this work, homeotropic alignment is achieved using noncovalent interactions between the LCLC molecules and various alignment layers including graphene, parylene films, poly(methyl methacrylate) films, and fluoropolymer films. The LCLC molecules are unique in that they self-assemble via noncovalent interactions in water into elongated aggregates which, in turn, form nematic and columnar liquid crystal (LC) phases. Here we exploit these same noncovalent interactions to induce homeotropic anchoring of the nematic LCLC. Homeotropic alignment is confirmed by polarized optical microscopy and conoscopy. We also report on novel transient stripe textures that occur when an initial flow-induced planar alignment transforms into the equilibrium homeotropic alignment required by boundary conditions. An understanding of this behavior could be important for switching applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA