Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Adv Mater ; : e2408320, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39285801

RESUMO

Achieving both formability and functionality in thermoelectric materials remains a significant challenge due to their inherent brittleness. Previous approaches, such as polymer infiltration, often compromise thermoelectric efficiency, underscoring the need for flexible, all-inorganic alternatives. This study demonstrates that the extreme brittleness of thermoelectric bismuth telluride (Bi2Te3) bulk compounds can be overcome by harnessing the nanoscale flexibility of Bi2Te3 nanoribbons and twisting them into a yarn structure. The resulting Bi2Te3 yarn, with a Seebeck coefficient of -126.6 µV K-1, exhibits remarkable deformability, enduring extreme bending curvatures (down to 0.5 mm-1) and tensile strains of ≈5% through over 1000 cycles without significant resistance change. This breakthrough allows the yarn to be seamlessly integrated into various applications-wound around metallic pipes, embedded within life jackets, or woven into garments-demonstrating unprecedented adaptability and durability. Moreover, a simple 4-pair thermoelectric generator comprising Bi2Te3 yarns and metallic wires generates a maximum output voltage of 67.4 mV, substantiating the effectiveness of thermoelectric yarns in waste heat harvesting. These advances not only challenge the traditional limitations posed by the brittleness of thermoelectric materials but also open new avenues for their application in wearable and structural electronics.

2.
Adv Sci (Weinh) ; 11(38): e2407045, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39120024

RESUMO

Contact lenses have been instrumental in vision correction and are expected to be utilized in augmented reality (AR) displays through the integration of electronic and optical components. In optics, metasurfaces, an array of sub-wavelength nanostructures, have offered optical multifunctionality in an ultra-compact form factor, facilitating integration into various imaging, and display systems. However, transferring metasurfaces onto contact lenses remains challenging due to the non-biocompatible materials of extant imprinting methods and the structural instability caused by the swelling and shrinking of the wetted surface. Here, a biocompatible method is presented to transfer metasurfaces onto contact lenses using hyaluronic acid (HA) as a soft mold and to allow for holographic light projection. A high-efficiency metahologram is obtained with an all-metallic 3D meta-atom enhanced by the anisotropy of a rectangular structure, and a reflective background metal layer. A corrugated metal layer on the HA mold is supported with a SiO2 capping layer, to avoid unwanted wrinkles and to ensure structural stability when transferred to the surface of pliable and wettable contact lenses. Biocompatible method of transferring metasurfaces onto contact lenses promises the integration of diverse optical components, including holograms, lenses, gratings and more, to advance the visual experience for AR displays and human-computer interfaces.

3.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38955136

RESUMO

The performance of organic semiconductor devices with heterojunctions between the organic semiconductors and electrodes can be improved by reducing the contact resistance. In this study, we have developed nanopatterned electrodes that gradually change the impedance at the interface between the metal and organic semiconductor in organic devices, which were fabricated in periodic patterns using nanoimprint lithography. The imprint pattern spacing was changed to control the interface between the metal and organic semiconductor to ensure smooth carrier injection. We analyzed the carrier injection based on the pattern spacing of the electrode interface using electrical current-voltage and capacitance-frequency measurements in the diode. Subsequently, we analyzed the improved current mechanism through numerical simulation. Therefore, this study suggests the possibility of designing the interface of an organic device using the nanostructure between the organic semiconductor and carrier injection electrode.

4.
Small ; 20(38): e2311736, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38552227

RESUMO

Nanomaterial-based yarns have been actively developed owing to their advantageous features, namely, high surface-area-to-volume ratios, flexibility, and unusual material characteristics such as anisotropy in electrical/thermal conductivity. The superior properties of the nanomaterials can be directly imparted and scaled-up to macro-sized structures. However, most nanomaterial-based yarns have thus far, been fabricated with only organic materials such as polymers, graphene, and carbon nanotubes. This paper presents a novel fabrication method for fully inorganic nanoribbon yarn, expanding its applicability by bundling highly aligned and suspended nanoribbons made from various inorganic materials (e.g., Au, Pd, Ni, Al, Pt, WO3, SnO2, NiO, In2O3, and CuO). The process involves depositing the target inorganic material on a nanoline mold, followed by suspension through plasma etching of the nanoline mold, and twisting using a custom-built yarning machine. Nanoribbon yarn structures of various functional inorganic materials are utilized for chemical sensors (Pd-based H2 and metal oxides (MOx)-based green gas sensors) and green energy transducers (water splitting electrodes/triboelectric nanogenerators). This method is expected to provide a comprehensive fabrication strategy for versatile inorganic nanomaterials-based yarns.

5.
Nanotechnology ; 35(18)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237178

RESUMO

Zinc oxide (ZnO) nanowires fabricated via wet chemical synthesis on flexible polymer substrates are inherently unstable against mechanical bending stress because of their high density and weak adhesion to the substrate. We introduce a novel method for controlling the density of such ZnO nanowire arrays using a three-dimensional corrugated metal substrate. These metal substrates, featuring extruded and recessed patterns fabricated via nanoimprint lithography, were employed as cathodes during the electrochemical deposition of ZnO nanowire arrays. The ZnO nanowire arrays synthesized on the patterned metal thin film exhibited smaller diameters and lower densities compared to those on non-patterned metal films. This reduction in density can be attributed to aligned nucleation and limited growth on the patterned metal surface. Crucially, ZnO nanowires synthesized on patterned metal substrates displayed remarkable mechanical robustness against external forces, a direct consequence of their reduced density. In contrast, nanowires synthesized on non-patterned metal substrates were broken under mechanical bending. Detailed morphological analyses performed after mechanical bending tests confirm that ZnO nanowires synthesized on nanoimprinted metal electrodes exhibited enhanced mechanical characteristics compared to those on non-patterned metal electrodes. These findings clearly demonstrate the promise of utilizing density-controlled ZnO nanowires in piezoelectric devices.

6.
Adv Sci (Weinh) ; 11(1): e2303704, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032705

RESUMO

As the demand for diverse nanostructures in physical/chemical devices continues to rise, the development of nanotransfer printing (nTP) technology is receiving significant attention due to its exceptional throughput and ease of use. Over the past decade, researchers have attempted to enhance the diversity of materials and substrates used in transfer processes as well as to improve the resolution, reliability, and scalability of nTP. Recent research on nTP has made continuous progress, particularly using the control of the interfacial adhesion force between the donor mold, target material, and receiver substrate, and numerous practical nTP methods with niche applications have been demonstrated. This review article offers a comprehensive analysis of the chronological advancements in nTP technology and categorizes recent strategies targeted for high-yield and versatile printing based on controlling the relative adhesion force depending on interfacial layers. In detail, the advantages and challenges of various nTP approaches are discussed based on their working mechanisms, and several promising solutions to improve morphological/material diversity are presented. Furthermore, this review provides a summary of potential applications of nanostructured devices, along with perspectives on the outlook and remaining challenges, which are expected to facilitate the continued progress of nTP technology and to inspire future innovations.

7.
Adv Mater ; 36(2): e2300871, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37083149

RESUMO

The high demand for micro-/nanohierarchical structures as components of functional substrates, bioinspired devices, energy-related electronics, and chemical/physical transducers has inspired their in-depth studies and active development of the related fabrication techniques. In particular, significant progress has been achieved in hierarchical structures physically engineered on surfaces, which offer the advantages of wide-range material compatibility, design diversity, and mechanical stability, and numerous unique structures with important niche applications have been developed. This review categorizes the basic components of hierarchical structures physically engineered on surfaces according to function/shape and comprehensively summarizes the related advances, focusing on the fabrication strategies, ways of combining basic components, potential applications, and future research directions. Moreover, the physicochemical properties of hierarchical structures physically engineered on surfaces are compared based on the function of their basic components, which may help to avoid the bottlenecks of conventional single-scale functional substrates. Thus, the present work is expected to provide a useful reference for scientists working on multicomponent functional substrates and inspire further research in this field.

8.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067809

RESUMO

In recent years, the convergence of edge computing and sensor technologies has become a pivotal frontier revolutionizing real-time data processing. In particular, the practice of data acquisition-which encompasses the collection of sensory information in the form of images and videos, followed by their transmission to a remote cloud infrastructure for subsequent analysis-has witnessed a notable surge in adoption. However, to ensure seamless real-time processing irrespective of the data volume being conveyed or the frequency of incoming requests, it is vital to proactively locate resources within the cloud infrastructure specifically tailored to data-processing tasks. Many studies have focused on the proactive prediction of resource demands through the use of deep learning algorithms, generating considerable interest in real-time data processing. Nonetheless, an inherent risk arises when relying solely on predictive resource allocation, as it can heighten the susceptibility to system failure. In this study, a framework that includes algorithms that periodically monitor resource requirements and dynamically adjust resource provisioning to match the actual demand is proposed. Under experimental conditions with the Bitbrains dataset, setting the network throughput to 300 kB/s and with a threshold of 80%, the proposed system provides a 99% performance improvement in terms of the autoscaling algorithm and requires only 0.43 ms of additional computational overhead compared to relying on a simple prediction model alone.

9.
Opt Express ; 31(21): 35113-35130, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859250

RESUMO

This paper proposes a residual network (ResNet)-based convolutional neural network (CNN) model to improve multi-qubit state measurements using an electron-multiplying charge-coupled device (EMCCD). The CNN model is developed to simultaneously use the intensity of pixel values and the shape of ion images in determining the quantum states of ions. In contrast, conventional methods use only the intensity values. In our experiments, the proposed model achieved a 99.53±0.14% mean individual measurement fidelity (MIMF) of 4 trapped ions, reducing the error by 46% when compared to the MIMF of maximum likelihood estimation method of 99.13±0.08%. In addition, it is experimentally shown that the model is also robust against the ion image drift, which was tested by intentionally shifting the ion images.

10.
Mater Horiz ; 10(12): 5983, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37791516

RESUMO

Correction for 'A wearable colorimetric sweat pH sensor-based smart textile for health state diagnosis' by Ji-Hwan Ha et al., Mater. Horiz., 2023, 10, 4163-4171, https://doi.org/10.1039/d3mh00340j.

11.
Adv Sci (Weinh) ; 10(35): e2302775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752815

RESUMO

The growing demand for soft intelligent systems, which have the potential to be used in a variety of fields such as wearable technology and human-robot interaction systems, has spurred the development of advanced soft transducers. Among soft systems, sensor-actuator hybrid systems are considered the most promising due to their effective and efficient performance, resulting from the synergistic and complementary interaction between their sensor and actuator components. Recent research on integrated sensor and actuator systems has resulted in a range of conceptual and practical soft systems. This review article provides a comprehensive analysis of recent advances in sensor and actuator integrated systems, which are grouped into three categories based on their primary functions: i) actuator-assisted sensors for intelligent detection, ii) sensor-assisted actuators for intelligent movement, and iii) sensor-actuator interactive devices for a hybrid of intelligent detection and movement. In addition, several bottlenecks in current studies are discussed, and prospective outlooks, including potential applications, are presented. This categorization and analysis will pave the way for the advancement and commercialization of sensor and actuator-integrated systems.

12.
Mater Horiz ; 10(10): 4163-4171, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37338170

RESUMO

Sweat pH is an important indicator for diagnosing disease states, such as cystic fibrosis. However, conventional pH sensors are composed of large brittle mechanical parts and need additional instruments to read signals. These pH sensors have limitations for practical wearable applications. In this study, we propose wearable colorimetric sweat pH sensors based on curcumin and thermoplastic-polyurethane (C-TPU) electrospun-fibers to diagnose disease states by sweat pH monitoring. This sensor aids in pH monitoring by changing color in response to chemical structure variation from enol to di-keto form via H-atom separation. Its chemical structure variation changes the visible color due to light absorbance and reflectance changes. Furthermore, it can rapidly and sensitively detect sweat pH due to its superior permeability and wettability. By O2 plasma activation and thermal pressing, this colorimetric pH sensor can be easily attached to various fabric substrates such as swaddling and patient clothing via surface modification and mechanical interlocking of C-TPU. Furthermore, the diagnosable clothing is durable and reusable enough to neutral washing conditions due to the reversible pH colorimetric sensing performance by restoring the enol form of curcumin. This study contributes to the development of smart diagnostic clothing for cystic fibrosis patients who require continuous sweat pH monitoring.


Assuntos
Curcumina , Fibrose Cística , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Fibrose Cística/diagnóstico , Colorimetria , Curcumina/análise , Têxteis , Concentração de Íons de Hidrogênio
13.
Soft Matter ; 19(15): 2755-2763, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987782

RESUMO

Water-insoluble DNA complexes are suitable for producing free-standing DNA films due to their low water sensitivity, which prevents their rapid degradation in aqueous environments. Here, we proposed two types of free-standing films that exhibit low dissolution rates in water: low molecular weight chitosan (LCS)-DNA films and phosphatidylcholine (PC)-cetyltrimethylammonium (CTMA)-DNA films. The structure and binding characteristics of the LCS-DNA and PC-CTMA-DNA complexes were investigated with UV-Vis spectroscopy and via the fluorescent characteristics of daunorubicin bound to them. A simple drop-casting method was then adopted for both complexes to fabricate free-standing films. An increase in antioxidant activity and water-resistance of the LCS-DNA DNA film was observed when the molar ratio of LCS to DNA was increased, but the dissolution rate of the LCS-DNA film was also dependent on the ionic strength of the dissolving solution. Fourteen days were required to dissolve the LCS-DNA film in deionized water, whereas immediate dissolution was observed in 1× phosphate-buffered saline (PBS). Deformation of the PC-CTMA-DNA film was accelerated by H2O2, such that the PC-CTMA-DNA film was degraded after 21 days of immersion in 1× PBS with H2O2. Due to the low dissolution rate in water and antioxidant activity, the free-standing LCS-DNA film should be able to store and protect embedded clinical materials, such as proteins and intercalating drugs, from moisture and enable localized delivery of treatments to designated sites. Also, the free-standing PC-CTMA-DNA film could be a biocompatible candidate for use as a membrane or sensor for detecting the levels of reactive oxygen species.


Assuntos
Quitosana , Água , Água/química , Antioxidantes , Peróxido de Hidrogênio , Quitosana/química , Cetrimônio , DNA/química
14.
ACS Nano ; 17(6): 5935-5942, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36916819

RESUMO

The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal nTP technique utilizing covalent bonding-based adhesives to improve the adhesion between the target material and substrate. Additionally, the technique employed plasma-based selective etching to weaken the adhesion between the mold and target material, thereby enabling the reliable modulation of the relative adhesion forces, regardless of the material or substrate. The technique was evaluated by printing four optical materials on nine substrates, including rigid, flexible, and stretchable substrates. Finally, its applicability was demonstrated by fabricating a ring hologram, a flexible plasmonic color filter, and extraordinary optical transmission-based strain sensors. The high accuracy and reliability of the proposed nTP method were verified by the performance of nanophotonic devices that closely matched numerical simulation results.

15.
Nat Commun ; 14(1): 833, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788240

RESUMO

The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designability, and structural reversibility under strain but is not applicable for nanoscale device printing because of the bottleneck at nanofabrication and design technique. Herein, a configuration-designable nanoscale 3D fabrication is suggested through a robust nanotransfer methodology and design of substrate's mechanical characteristics. Covalent bonding-based two-dimensional nanotransfer allowing for nanostructure printing on elastomer substrates is used to address fabrication problems, while the feasibility of configuration design through the modulation of substrate's mechanical characteristics is examined using analytical calculations and numerical simulations, allowing printing of various 3D nanostructures. The printed nanostructures exhibit strain-independent electrical properties and are therefore used to fabricate stretchable H2 and NO2 sensors with high performances stable under external strains of 30%.

16.
ACS Biomater Sci Eng ; 9(2): 608-616, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36595627

RESUMO

Thanks to its remarkable properties of self-assembly and molecular recognition, DNA can be used in the construction of various dimensional nanostructures to serve as templates for decorating nanomaterials with nanometer-scale precision. Accordingly, this study discusses a design strategy for fabricating such multidimensional DNA nanostructures made of simple C-motifs. One-dimensional (1D) honeycomb-like tubes (1HTs) and two-dimensional (2D) honeycomb-like lattices (2HLs) were constructed using a C-motif with an arm length of 14 nucleotides (nt) at an angle of 240° along the counterclockwise direction. We designed and fabricated four different types of 1HTs and three different 2HLs. The study used atomic force microscopy to characterize the distinct topologies of the 1D and 2D DNA nanostructures (i.e., 1HTs and 2HLs, respectively). The width deviation of the 1HTs and height suppression percentage of the 2HLs were calculated and discussed. Our study can be provided to construct various dimensional DNA nanostructures easily with high efficiency.


Assuntos
Nanoestruturas , Conformação de Ácido Nucleico , Nanoestruturas/química , DNA/química , Microscopia de Força Atômica
17.
ACS Nano ; 16(11): 18157-18167, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36240045

RESUMO

Biocompatible adhesive films are important for many applications (e.g., wearable devices, implantable devices, and attachable sensors). In particular, achieving self-adhesion on one side of a film with biocompatible materials is a compelling goal in adhesion science. Herein, we report a simple and easy manufacturing process using water-soluble hyaluronic acid (HA) that allows adhesiveness on only one side using binary polymer mixtures based on a phase-separation strategy with an elastomer. HA influx allows for the entangled polymer chains of the elastomer to spontaneously deform, permitting tunable mechanical elasticity, conformability, and adhesion. The proposed adhesive film enables the transfer of nanopatterning and the attachment of various surfaces without the use of additional chemicals. In addition, the film can be used for measuring epidermal biopotential and for skin fixation of drug devices. Therefore, the developed facile asymmetric adhesion can block the interferences of other materials on the unnecessary adhesion side, providing considerable potential for the development of functional, multifunctional, and smart bioadhesives.


Assuntos
Adesivos , Polímeros , Cimentos de Resina , Eletrônica , Elastômeros
18.
ACS Appl Bio Mater ; 5(6): 2812-2818, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35543024

RESUMO

Recently, 3D printing has provided opportunities for designing complex structures with ease. These printed structures can serve as molds for complex materials such as DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA that have easily tunable functionalities via the embedding of various nanomaterials such as ions, nanoparticles, fluorophores, and proteins. Herein, we develop a simple and efficient method for constructing DNA flat and curved films containing water-soluble/thermochromatic dyes and di/trivalent ions and CTMA-modified DNA films embedded with organic light-emitting molecules (OLEM) with the aid of 2D/3D frames made by a 3D printer. We study the Raman spectra, current, and resistance of Cu2+-doped and Tb3+-doped DNA films and the photoluminescence of OLEM-embedded CTMA-modified DNA films to better understand the optoelectric characteristics of the samples. Compared to pristine DNA, ion-doped DNA films show noticeable variation of Raman peak intensities, which might be due to the interaction between the ion and phosphate backbone of DNA and the intercalation of ions in DNA base pairs. As expected, ion-doped DNA films show an increase of current with an increase in bias voltage. Because of the presence of metallic ions, DNA films with embedded ions showed relatively larger current than pristine DNA. The photoluminescent emission peaks of CTMA-modified DNA films with OLEMRed, OLEMGreen, and OLEMBlue were obtained at the wavelengths of 610, 515, and 469 nm, respectively. Finally, CIE color coordinates produced from CTMA-modified DNA films with different OLEM color types were plotted in color space. It may be feasible to produce multilayered DNA films as well. If so, multilayered DNA films embedded with different color dyes, ions, fluorescent materials, nanoparticles, proteins, and drug molecules could be used to realize multifunctional physical devices such as energy harvesting and chemo-bio sensors in the near future.


Assuntos
DNA , Nanoestruturas , Cetrimônio , Corantes , DNA/química , Íons , Nanoestruturas/química
19.
Small Methods ; 6(7): e2200248, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35507776

RESUMO

Three-dimensional (3D) hierarchical structures have been explored for various applications owing to the synergistic effects of micro- and nanostructures. However, the development of spherical micro/nano hierarchical structures (S-HSs), which can be used as energy/water harvesting systems and sensing devices, remains challenging owing to the trade-off between structural complexity and fabrication difficulty. This paper presents a new strategy for facile, scalable S-HS fabrication using a thermal expansion of microspheres and nanopatterned structures. When a specific temperature is applied to a composite film of microspheres and elastomers with nanopatterned surfaces, microspheres are expanded and 3D spherical microstructures are generated. Various nanopatterns and densities of spherical microstructures can thereby be quantitatively controlled. The fabricated S-HSs have been used in renewable electrical energy harvesting and sustainable water management applications. Compared to a triboelectric nanogenerator (TENG) with bare film, the S-HS-based TENG exhibited 4.48 times higher triboelectric performance with high mechanical durability. Furthermore, an S-HS is used as a water harvesting device to capture water in a fog environment. The water collection rate is dramatically enhanced by the increased surface area and locally concentrated vapor diffusion flux due to the spherical microstructures.

20.
Nanoscale ; 14(4): 1136-1143, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34989389

RESUMO

Suspended nanostructures play an important role in enhancing the performance of a diverse group of nanodevices. However, realizing a good arrangement and suspension for nanostructures of various shapes remains a significant challenge. Herein, a rapid and simple method for fabricating wafer-scale, highly uniform, well-arrayed suspended nanostructures via nanowelding lithography is reported. Suspended nanostructures with various shapes (nanowires, nanoholes, nanomesh, and nanofilms) and materials (gold, silver, and palladium metals) were employed to demonstrate the applicability of our method. Moreover, gas sensors and thermoacoustic speakers with suspended nanowires outperformed those with unsuspended nanostructures. The proposed method is expected to help advance the development of future nanodevices based on suspended nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA