Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Pharmacol ; 973: 176610, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663541

RESUMO

Aripiprazole, a third-generation antipsychotic, has been widely used to treat schizophrenia. In this study, we evaluated the effect of aripiprazole on voltage-gated potassium (Kv) channels in rabbit coronary arterial smooth muscle cells using the patch clamp technique. Aripiprazole reduced the Kv current in a concentration-dependent manner with a half-maximal inhibitory concentration of 0.89 ± 0.20 µM and a Hill coefficient of 1.30 ± 0.25. The inhibitory effect of aripiprazole on Kv channels was voltage-dependent, and an additional aripiprazole-induced decrease in the Kv current was observed in the voltage range of full channel activation. The decay rate of Kv channel inactivation was accelerated by aripiprazole. Aripiprazole shifted the steady-state activation curve to the right and the inactivation curve to the left. Application of a repetitive train of pulses (1 and 2 Hz) promoted inhibition of the Kv current by aripiprazole. Furthermore, the recovery time constant from inactivation increased in the presence of aripiprazole. Pretreatment of Kv1.5 subtype inhibitor reduced the inhibitory effect of aripiprazole. However, pretreatment with Kv 7 and Kv2.1 subtype inhibitors did not change the degree of aripiprazole-induced inhibition of the Kv current. We conclude that aripiprazole inhibits Kv channels in a concentration-, voltage-, time-, and use (state)-dependent manner by affecting the gating properties of the channels.


Assuntos
Aripiprazol , Vasos Coronários , Miócitos de Músculo Liso , Bloqueadores dos Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Aripiprazol/farmacologia , Coelhos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/citologia , Bloqueadores dos Canais de Potássio/farmacologia , Masculino , Antipsicóticos/farmacologia , Relação Dose-Resposta a Droga
2.
Eur J Pharmacol ; 972: 176589, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38631503

RESUMO

We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 µM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 µM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 µM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 µM) and XE991 (10 µM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 µM) and cyclopiazonic acid (10 µM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 µM) and KT5720 (1 µM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Artéria Femoral , Glucosídeos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Transdução de Sinais , Tiofenos , Vasodilatação , Animais , Coelhos , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/fisiologia , Vasodilatação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Tiofenos/farmacologia , Masculino , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Vasodilatadores/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores
3.
J Appl Toxicol ; 44(3): 391-399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37786982

RESUMO

The regulation of membrane potential and the contractility of vascular smooth muscle cells (VSMCs) by voltage-dependent K+ (Kv) potassium channels are well-established. In this study, native VSMCs from rabbit coronary arteries were used to investigate the inhibitory effect of sertindole, an atypical antipsychotic agent, on Kv channels. Sertindole induced dose-dependent inhibition of Kv channels, with an IC50 of 3.13 ± 0.72 µM. Although sertindole did not cause a change in the steady-state activation curve, it did lead to a negative shift in the steady-state inactivation curve. The application of 1- or 2-Hz train pulses failed to alter the sertindole-induced inhibition of Kv channels, suggesting use-independent effects of the drug. The inhibitory response to sertindole was significantly diminished by pretreatment with a Kv1.5 inhibitor but not by Kv2.1 and Kv7 subtype inhibitors. These findings demonstrate the sertindole dose-dependent and use-independent inhibition of vascular Kv channels (mainly the Kv1.5 subtype) through a mechanism that involves altering steady-state inactivation curves. Therefore, the use of sertindole as an antipsychotic drug may have adverse effects on the cardiovascular system.


Assuntos
Antipsicóticos , Imidazóis , Indóis , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Coelhos , Vasos Coronários , Antipsicóticos/toxicidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/farmacologia , Bloqueadores dos Canais de Potássio/toxicidade , Miócitos de Músculo Liso
4.
Eur J Pharmacol ; 957: 176005, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37611842

RESUMO

Lurasidone is a second-generation antipsychotic drug used to treat schizophrenia, mania, and bipolar disorder. The drug is an antagonist of the 5-HT2A and D2 receptors. No effect of lurasidone on the voltage-gated K+ (Kv) channels has yet been identified. Here, we show that lurasidone inhibits the vascular Kv channels of rabbit coronary arterial smooth muscle cells in a dose-dependent manner with an IC50 of 1.88 ± 0.21 µM and a Hill coefficient of 0.98 ± 0.09. Although lurasidone (3 µM) did not affect the activation kinetics, the drug negatively shifted the inactivation curve, suggesting that the drug interacted with the voltage sensors of Kv channels. Application of 1 or 2 Hz train steps in the presence of lurasidone significantly increased Kv current inhibition. The recovery time after channel inactivation increased in the presence of lurasidone. These results suggest that the inhibitory action of lurasidone is use (state)-dependent. Pretreatment with a Kv 1.5 subtype inhibitor effectively reduced the inhibitory effect of lurasidone. However, the inhibitory effect on Kv channels did not markedly change after pretreatment with a Kv 2.1 or a Kv7 subtype inhibitor. In summary, lurasidone inhibits vascular Kv channels (primarily the Kv1.5 subtype) in a concentration- and use (state)-dependent manner by shifting the steady-state inactivation curve.


Assuntos
Antipsicóticos , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Coelhos , Cloridrato de Lurasidona/farmacologia , Antipsicóticos/farmacologia , Vasos Coronários , Miócitos de Músculo Liso
5.
J Appl Toxicol ; 43(12): 1926-1933, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551856

RESUMO

Paliperidone, an atypical antipsychotic, is widely used to treat schizophrenia. In this study, we explored whether paliperidone inhibited the voltage-dependent K+ (Kv) channels of rabbit coronary arterial smooth muscle cells. Paliperidone reduced Kv channel activity in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50 ) of 16.58 ± 3.03 µM and a Hill coefficient of 0.60 ± 0.04. It did not significantly shift the steady-state activation or inactivation curves, suggesting that the drug did not affect the gating properties of Kv channels. In the presence of paliperidone, the application of 20 repetitive depolarizing pulses at 1 and 2 Hz gradually increased the inhibition of the Kv current. Further, the recovery time constant after Kv channel inactivation was increased by paliperidone, indicating that it inhibited the Kv channel in a use (state)-dependent manner. Its inhibitory effects were reduced by pretreatment with a Kv1.5 subtype inhibitor. However, pretreatment with a Kv2.1 or Kv7 inhibitor did not reduce its inhibitory effect. We conclude that paliperidone inhibits Kv channels (mainly Kv1.5 subtype channels) in a concentration- and use (state)-dependent manner without changing channel gating.


Assuntos
Antipsicóticos , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Coelhos , Antipsicóticos/toxicidade , Palmitato de Paliperidona/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/farmacologia , Miócitos de Músculo Liso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA