Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Teach ; 45(9): 972-977, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37105593

RESUMO

Learning in the operating theatre forms a critical part of postgraduate medical education. Postgraduate doctors present a diverse cohort of learners with a wide range of learning needs that will vary by their level of experience and curriculum requirements. With evidence of both trainee dissatisfaction with the theatre learning experience and reduced time spent in the operating theatre, which has been exacerbated by the effects of the Covid-19 pandemic, it is vital that every visit to the operating theatre is used as a learning opportunity. We have devised 12 tips aimed at both learners and surgeons to optimise learning in the operating theatre, set out into four domains: educational context, preparation, learning in theatre, feedback and reflection. These tips have been created by a process of literature review and acknowledgment of established learning theory, with further discussion amongst surgical trainees, senior surgical faculty, surgical educators and medical education faculty.


Assuntos
COVID-19 , Pandemias , Humanos , Currículo , Aprendizagem , Salas Cirúrgicas
2.
Am J Sports Med ; 46(4): 924-932, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29364699

RESUMO

BACKGROUND: A simple suture technique in transosseous meniscal root repair can provide equivalent resistance to cyclic load and is less technically demanding to perform compared with more complex suture configurations, yet maximum yield loads are lower. Various suture materials have been investigated for repair, but it is currently not clear which material is optimal in terms of repair strength. Meniscal root anatomy is also complex; consisting of the ligamentous mid-substance (root ligament), the transition zone between the meniscal body and root ligament; the relationship between suture location and maximum failure load has not been investigated in a simulated surgical repair. HYPOTHESES: (A) Using a knottable, 2-mm-wide, ultra-high-molecular-weight polyethylene (UHMWPE) braided tape for transosseous meniscal root repair with a simple suture technique will give rise to a higher maximum failure load than a repair made using No. 2 UHMWPE standard suture material for simple suture repair. (B) Suture position is an important factor in determining the maximum failure load. STUDY DESIGN: Controlled laboratory study. METHODS: In part A, the posterior root attachment of the medial meniscus was divided in 19 porcine knees. The tibias were potted, and repair of the medial meniscus posterior root was performed. A suture-passing device was used to place 2 simple sutures into the posterior root of the medial meniscus during a repair procedure that closely replicated single-tunnel, transosseous surgical repair commonly used in clinical practice. Ten tibias were randomized to repair with No. 2 suture (Suture group) and 9 tibias to repair with 2-mm-wide knottable braided tape (Tape group). The repair strength was assessed by maximum failure load measured by use of a materials testing machine. Micro-computed tomography (CT) scans were obtained to assess suture positions within the meniscus. The wide range of maximum failure load appeared related to suture position. In part B, 10 additional porcine knees were prepared. Five knees were randomized to the Suture group and 5 to the Tape group. All repairs were standardized for location, and the repair was placed in the body of the meniscus. A custom image registration routine was created to coregister all 29 menisci, which allowed the distribution of maximum failure load versus repair location to be visualized with a heat map. RESULTS: In part A, higher maximum failure load was found for the Tape group (mean, 86.7 N; 95% CI, 63.9-109.6 N) compared with the Suture group (mean, 57.2 N; 95% CI, 30.5-83.9 N). The 3D micro-CT analysis of suture position showed that the mean maximum failure load for repairs placed in the meniscus body (mean, 104 N; 95% CI, 81.2-128.0 N) was higher than for those placed in the root ligament (mean, 35.1 N; 95% CI, 15.7-54.5 N). In part B, the mean maximum failure load was significantly greater for the Tape group, 298.5 N ( P = .016, Mann-Whitney U; 95% CI, 183.9-413.1 N), compared with that for the Suture group, 146.8 N (95% CI, 82.4-211.6 N). Visualization with the heat map revealed that small variations in repair location on the meniscus were associated with large differences in maximum failure load; moving the repair entry point by 3 mm could reduce the failure load by 50%. CONCLUSION: The use of 2-mm braided tape provided higher maximum failure load than the use of a No. 2 suture. The position of the repair in the meniscus was also a highly significant factor in the properties of the constructs. CLINICAL RELEVANCE: The results provide insight into material and location for optimal repair strength.


Assuntos
Meniscos Tibiais/cirurgia , Técnicas de Sutura , Lesões do Menisco Tibial/cirurgia , Animais , Fenômenos Biomecânicos , Humanos , Menisco/cirurgia , Polietilenos , Suturas , Suínos , Tíbia/cirurgia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA