Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mech Ageing Dev ; 221: 111976, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111640

RESUMO

Human aging is linked to bone loss, resulting in bone fragility and an increased risk of fractures. This is primarily due to an age-related decline in the function of bone-forming osteoblastic cells and accelerated cellular senescence within the bone microenvironment. Here, we provide a detailed discussion of the hypothesis that age-related defective bone formation is caused by senescence of skeletal stem cells, as they are the main source of bone forming osteoblastic cells and influence the composition of bone microenvironment. Furthermore, this review discusses potential strategies to target cellular senescence as an emerging approach to treat age-related bone loss.


Assuntos
Envelhecimento , Senescência Celular , Osteoblastos , Humanos , Senescência Celular/fisiologia , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Envelhecimento/patologia , Osteoblastos/metabolismo , Animais , Osteoporose/metabolismo , Osteoporose/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Osteogênese/fisiologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia
2.
EClinicalMedicine ; 72: 102624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737002

RESUMO

Background: Previous studies have indicated that glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) may enhance bone formation and have neutral or beneficial effects on fracture risk. We evaluated the effect of the GLP-1RA semaglutide on the bone formation marker Procollagen type I N-terminal propeptide (PINP) in adults with increased fracture risk. Methods: This randomised, placebo-controlled, double-blinded, phase 2 clinical trial was conducted at two public hospitals in Denmark. We enrolled 64 men and women with increased fracture risk based on a T-score < -1.0 at the total hip or lumbar spine and/or low-energy fracture within three years of recruitment. Participants were randomised (1:1) to receive once-weekly subcutaneous semaglutide 1.0 mg or placebo. The primary outcome was changes in plasma (P)-PINP from baseline to week 52. Primary and safety outcomes were assessed and evaluated for all participants. This trial is complete and registered with ClinicalTrials.gov, NCT04702516. Findings: Between March 24 and December 8, 2021, 55 (86%) postmenopausal women and nine men with a mean age of 63 years (SD 5.5) and BMI of 27.5 kg/m2 (SD 4.5) were enrolled. There was no effect on changes in P-PINP from baseline to week 52 between the two groups (estimated treatment difference (ETD) semaglutide versus placebo 3.8 µg/L [95% CI -5.6 to 13.3]; p = 0.418), and no difference in P-PINP levels between groups at week 52 (semaglutide 64.3 µg/L versus placebo 62.3 µg/L [95% CI -10.8 to 15.0]; p = 0.749). The secondary outcomes showed higher plasma levels of bone resorption marker Collagen type I cross-linked C-terminal telopeptide (P-CTX) in the semaglutide group than in the placebo group (ETD 166.4 ng/L [95% CI 25.5-307.3]; p = 0.021). Compared to placebo, lumbar spine and total hip areal bone mineral densities (aBMD) were lower in the semaglutide group after 52 weeks ((ETD lumbar spine -0.018 g/cm3 [95% CI -0.031 to -0.005]; p = 0.007); ETD total hip -0.020 g/cm2 ([95% CI -0.032 to -0.008]; p = 0.001). Treatment differences in femoral neck aBMD were not observed ([95% CI [-0.017 to 0.006]; p = 0.328). Further, body weight was lower in the semaglutide group than in the placebo group after 52 weeks (ETD -6.8 kg [95% CI -8.8 to -4.7]; p < 0.001). Thirty-one [97%] in the semaglutide group and 18 [56%] in the placebo group experienced at least one adverse event, including four serious events (two in each group). No episodes of hypoglycaemia or deaths were reported. Interpretation: In adults with increased fracture risk, semaglutide once weekly did not increase bone formation based on the bone formation marker P-PINP. The observed increase in bone resorption in the semaglutide group may be explained by the accompanying weight loss. Funding: Region of Southern Denmark, Novo Nordisk Foundation, and Gangsted Foundation. Novo Nordisk provided the investigational drug and placebo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA