Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Clin Oncol ; 42(10): 1135-1145, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190578

RESUMO

PURPOSE: Outcomes for children with relapsed and refractory high-risk neuroblastoma (RR-HRNB) remain dismal. The BEACON Neuroblastoma trial (EudraCT 2012-000072-42) evaluated three backbone chemotherapy regimens and the addition of the antiangiogenic agent bevacizumab (B). MATERIALS AND METHODS: Patients age 1-21 years with RR-HRNB with adequate organ function and performance status were randomly assigned in a 3 × 2 factorial design to temozolomide (T), irinotecan-temozolomide (IT), or topotecan-temozolomide (TTo) with or without B. The primary end point was best overall response (complete or partial) rate (ORR) during the first six courses, by RECIST or International Neuroblastoma Response Criteria for patients with measurable or evaluable disease, respectively. Safety, progression-free survival (PFS), and overall survival (OS) time were secondary end points. RESULTS: One hundred sixty patients with RR-HRNB were included. For B random assignment (n = 160), the ORR was 26% (95% CI, 17 to 37) with B and 18% (95% CI, 10 to 28) without B (risk ratio [RR], 1.52 [95% CI, 0.83 to 2.77]; P = .17). Adjusted hazard ratio for PFS and OS were 0.89 (95% CI, 0.63 to 1.27) and 1.01 (95% CI, 0.70 to 1.45), respectively. For irinotecan ([I]; n = 121) and topotecan (n = 60) random assignments, RRs for ORR were 0.94 and 1.22, respectively. A potential interaction between I and B was identified. For patients in the bevacizumab-irinotecan-temozolomide (BIT) arm, the ORR was 23% (95% CI, 10 to 42), and the 1-year PFS estimate was 0.67 (95% CI, 0.47 to 0.80). CONCLUSION: The addition of B met protocol-defined success criteria for ORR and appeared to improve PFS. Within this phase II trial, BIT showed signals of antitumor activity with acceptable tolerability. Future trials will confirm these results in the chemoimmunotherapy era.


Assuntos
Neuroblastoma , Topotecan , Criança , Humanos , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Temozolomida/uso terapêutico , Irinotecano/uso terapêutico , Topotecan/efeitos adversos , Bevacizumab/efeitos adversos , Dacarbazina/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neuroblastoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
2.
Front Oncol ; 13: 1237720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781199

RESUMO

Purpose: Dynamic contrast-enhanced MRI (DCE) and apparent diffusion coefficient (ADC) are currently used to evaluate treatment response of breast cancer. The purpose of the current study was to evaluate the three-component Restriction Spectrum Imaging model (RSI3C), a recent diffusion-weighted MRI (DWI)-based tumor classification method, combined with elastic image registration, to automatically monitor breast tumor size throughout neoadjuvant therapy. Experimental design: Breast cancer patients (n=27) underwent multi-parametric 3T MRI at four time points during treatment. Elastically-registered DWI images were used to generate an automatic RSI3C response classifier, assessed against manual DCE tumor size measurements and mean ADC values. Predictions of therapy response during treatment and residual tumor post-treatment were assessed using non-pathological complete response (non-pCR) as an endpoint. Results: Ten patients experienced pCR. Prediction of non-pCR using ROC AUC (95% CI) for change in measured tumor size from pre-treatment time point to early-treatment time point was 0.65 (0.38-0.92) for the RSI3C classifier, 0.64 (0.36-0.91) for DCE, and 0.45 (0.16-0.75) for change in mean ADC. Sensitivity for detection of residual disease post-treatment was 0.71 (0.44-0.90) for the RSI3C classifier, compared to 0.88 (0.64-0.99) for DCE and 0.76 (0.50-0.93) for ADC. Specificity was 0.90 (0.56-1.00) for the RSI3C classifier, 0.70 (0.35-0.93) for DCE, and 0.50 (0.19-0.81) for ADC. Conclusion: The automatic RSI3C classifier with elastic image registration suggested prediction of response to treatment after only three weeks, and showed performance comparable to DCE for assessment of residual tumor post-therapy. RSI3C may guide clinical decision-making and enable tailored treatment regimens and cost-efficient evaluation of neoadjuvant therapy of breast cancer.

3.
Magn Reson Med ; 87(4): 1938-1951, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904726

RESUMO

PURPOSE: Restriction spectrum imaging (RSI) decomposes the diffusion-weighted MRI signal into separate components of known apparent diffusion coefficients (ADCs). The number of diffusion components and optimal ADCs for RSI are organ-specific and determined empirically. The purpose of this work was to determine the RSI model for breast tissues. METHODS: The diffusion-weighted MRI signal was described using a linear combination of multiple exponential components. A set of ADC values was estimated to fit voxels in cancer and control ROIs. Later, the signal contributions of each diffusion component were estimated using these fixed ADC values. Relative-fitting residuals and Bayesian information criterion were assessed. Contrast-to-noise ratio between cancer and fibroglandular tissue in RSI-derived signal contribution maps was compared to DCE imaging. RESULTS: A total of 74 women with breast cancer were scanned at 3.0 Tesla MRI. The fitting residuals of conventional ADC and Bayesian information criterion suggest that a 3-component model improves the characterization of the diffusion signal over a biexponential model. Estimated ADCs of triexponential model were D1,3 = 0, D2,3 = 1.5 × 10-3 , and D3,3 = 10.8 × 10-3 mm2 /s. The RSI-derived signal contributions of the slower diffusion components were larger in tumors than in fibroglandular tissues. Further, the contrast-to-noise and specificity at 80% sensitivity of DCE and a subset of RSI-derived maps were equivalent. CONCLUSION: Breast diffusion-weighted MRI signal was best described using a triexponential model. Tumor conspicuity in breast RSI model is comparable to that of DCE without the use of exogenous contrast. These data may be used as differential features between healthy and malignant breast tissues.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Teorema de Bayes , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade
4.
NMR Biomed ; 35(5): e4654, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34967468

RESUMO

PURPOSE: The purpose of this study was to investigate the effects of echo time dependence in IVIM quantification of the pseudo-diffusion fraction in breast cancer and whether correcting for the echo time dependence offers added clinical value. MATERIALS AND METHODS: Fifteen patients with biopsy-proven breast cancer underwent a 3 T MRI examination with an extended DWI protocol at two different echo times (TE = 53 ms, b = 0, 50 s/mm2 ; TE = 77 ms, b = 0, 50, 120, 200, 400, 700 s/mm2 ). Volumes of interest were delineated around the tumors. In addition, simulated MRI data were generated for different levels of signal-to-noise ratio and two values for the blood T2 relaxation time (T2p = 100 ms and 150 ms). The pseudo-diffusion signal fraction was estimated from the simulated and in vivo tumor data using both the standard IVIM model and an extended IVIM model that accounts for the echo time dependence arising from distinct transverse relaxation times. RESULTS: Simulations showed that the standard IVIM model overestimated the pseudo-diffusion fraction by 25% (T2p = 100 ms) and 60 % (T2p = 150 ms) (p < 0.0001 at SNR = 50). In vivo, the estimated apparent T2 value at b = 50 s/mm2 was around 8% lower than at b = 0 s/mm2 (p = 0.01) demonstrating a removal of the signal contribution from blood with long T2 associated with pseudo-diffusion. Using two different fixed values for T2p = 100, 150 ms, the pseudo-diffusion fraction was 15% and 46% higher in the standard model compared with the echo-time-corrected model (p < 0.01). CONCLUSION: The standard IVIM model was found to overestimate the pseudo-diffusion fraction by 15% to 46% compared with the echo-time-corrected model in breast tumor DWI data acquired at 3 T. Our results suggest that a corrected model may give more accurate results in terms of signal fractions, but may not justify the added time needed to acquire the additional data in terms of clinical value.


Assuntos
Neoplasias da Mama , Biópsia , Neoplasias da Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Razão Sinal-Ruído
5.
NMR Biomed ; 34(7): e4508, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33738878

RESUMO

Diffusion-weighted MRI (DWI) is an important tool for oncology research, with great clinical potential for the classification and monitoring of breast lesions. The utility of parameters derived from DWI, however, is influenced by specific analysis choices. The purpose of this study was to critically evaluate repeatability and curve-fitting performance of common DWI signal representations, for a prospective cohort of patients with benign breast lesions. Twenty informed, consented patients with confirmed benign breast lesions underwent repeated DWI (3 T) using: sagittal single-shot spin-echo echo planar imaging, bipolar encoding, TR/TE: 11,600/86 ms, FOV: 180 x 180 mm, matrix: 90 x 90, slices: 60 x 2.5 mm, iPAT: GRAPPA 2, fat suppression, and 13 b-values: 0-700 s/mm2 . A phase-reversed scan (b = 0 s/mm2 ) was acquired for distortion correction. Voxel-wise repeat-measures coefficients of variation (CoVs) were derived for monoexponential (apparent diffusion coefficient [ADC]), biexponential (intravoxel incoherent motion: f, D, D*) and stretched exponential (α, DDC) across the parameter histograms for lesion regions of interest (ROIs). Goodness-of-fit for each representation was assessed by Bayesian information criterion. The volume of interest (VOI) definition was repeatable (CoV 13.9%). Within lesions, and across both visits and the cohort, there was no dominant best-fit model, with all representations giving the best fit for a fraction of the voxels. Diffusivity measures from the signal representations (ADC, D, DDC) all showed good repeatability (CoV < 10%), whereas parameters associated with pseudodiffusion (f, D*) performed poorly (CoV > 50%). The stretching exponent α was repeatable (CoV < 12%). This pattern of repeatability was consistent over the central part of the parameter percentiles. Assumptions often made in diffusion studies about analysis choices will influence the detectability of changes, potentially obscuring useful information. No single signal representation prevails within or across lesions, or across repeated visits; parameter robustness is therefore a critical consideration. Our results suggest that stretched exponential representation is more repeatable than biexponential, with pseudodiffusion parameters unlikely to provide clinically useful biomarkers.


Assuntos
Doenças Mamárias/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/estatística & dados numéricos , Adulto , Teorema de Bayes , Biópsia com Agulha de Grande Calibre , Doenças Mamárias/patologia , Neoplasias da Mama/patologia , Estudos de Coortes , Feminino , Fibroadenoma/patologia , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes
6.
Methods Mol Biol ; 2216: 3-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33475991

RESUMO

Renal MRI holds incredible promise for making a quantum leap in improving diagnosis and care of patients with a multitude of diseases, by moving beyond the limitations and restrictions of current routine clinical practice. Clinical and preclinical renal MRI is advancing with ever increasing rapidity, and yet, aside from a few examples of renal MRI in routine use, it is still not good enough. Several roadblocks are still delaying the pace of progress, particularly inefficient education of renal MR researchers, and lack of harmonization of approaches that limits the sharing of results among multiple research groups.Here we aim to address these limitations for preclinical renal MRI (predominantly in small animals), by providing a comprehensive collection of more than 40 publications that will serve as a foundational resource for preclinical renal MRI studies. This includes chapters describing the fundamental principles underlying a variety of renal MRI methods, step-by-step protocols for executing renal MRI studies, and detailed guides for data analysis. This collection will serve as a crucial part of a roadmap toward conducting renal MRI studies in a robust and reproducible way, that will promote the standardization and sharing of data.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Assuntos
Biomarcadores/análise , Nefropatias/classificação , Nefropatias/patologia , Rim/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Guias de Prática Clínica como Assunto/normas , Progressão da Doença , Humanos , Nefropatias/terapia , Reprodutibilidade dos Testes
7.
Methods Mol Biol ; 2216: 187-204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476001

RESUMO

The specialized function of the kidney is reflected in its unique structure, characterized by juxtaposition of disorganized and ordered elements, including renal glomerula, capillaries, and tubules. The key role of the kidney in blood filtration, and changes in filtration rate and blood flow associated with pathological conditions, make it possible to investigate kidney function using the motion of water molecules in renal tissue. Diffusion-weighted imaging (DWI) is a versatile modality that sensitizes observable signal to water motion, and can inform on the complexity of the tissue microstructure. Several DWI acquisition strategies are available, as are different analysis strategies, and models that attempt to capture not only simple diffusion effects, but also perfusion, compartmentalization, and anisotropy. This chapter introduces the basic concepts of DWI alongside common acquisition schemes and models, and gives an overview of specific DWI applications for animal models of renal disease.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


Assuntos
Biomarcadores/análise , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Monitorização Fisiológica/métodos , Animais , Humanos , Software
8.
Methods Mol Biol ; 2216: 419-428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476014

RESUMO

Renal diffusion-weighted imaging (DWI) can be used to obtain information on the microstructure of kidney tissue, and has the potential to provide MR-biomarkers for functional renal imaging. Here we describe in a step-by-step experimental protocol the MRI method for measuring renal diffusion coefficients in rodents using ADC or IVIM models. Both methods provide quantification of renal diffusion coefficients; however, IVIM, a more complex model, allows for the calculation of the pseudodiffusion and fraction introduced by tissue vascular and tubular components. DWI provides information of renal microstructure contributing to the understanding of the physiology and the underlying processes that precede the beginning of pathologies.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Assuntos
Biomarcadores/análise , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Animais , Meios de Contraste , Camundongos , Monitorização Fisiológica , Software
9.
Methods Mol Biol ; 2216: 611-635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476027

RESUMO

Analysis of renal diffusion-weighted imaging (DWI) data to derive markers of tissue properties requires careful consideration of the type, extent, and limitations of the acquired data. Alongside data quality and general suitability for quantitative analysis, choice of diffusion model, fitting algorithm, and processing steps can have consequences for the precision, accuracy, and reliability of derived diffusion parameters. Here we introduce and discuss important steps for diffusion-weighted image processing, and in particular give example analysis protocols and pseudo-code for analysis using the apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) models. Following an overview of general principles, we provide details of optional steps, and steps for validation of results. Illustrative examples are provided, together with extensive notes discussing wider context of individual steps, and notes on potential pitfalls.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and experimental procedure.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Monitorização Fisiológica/métodos , Animais , Software
10.
Clin Cancer Res ; 27(4): 1094-1104, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33148675

RESUMO

PURPOSE: Diffusion-weighted MRI (DW-MRI) is a contrast-free modality that has demonstrated ability to discriminate between predefined benign and malignant breast lesions. However, how well DW-MRI discriminates cancer from all other breast tissue voxels in a clinical setting is unknown. Here we explore the voxelwise ability to distinguish cancer from healthy breast tissue using signal contributions from the newly developed three-component multi-b-value DW-MRI model. EXPERIMENTAL DESIGN: Patients with pathology-proven breast cancer from two datasets (n = 81 and n = 25) underwent multi-b-value DW-MRI. The three-component signal contributions C 1 and C 2 and their product, C 1 C 2, and signal fractions F 1, F 2, and F 1 F 2 were compared with the image defined on maximum b-value (DWI max), conventional apparent diffusion coefficient (ADC), and apparent diffusion kurtosis (K app). The ability to discriminate between cancer and healthy breast tissue was assessed by the false-positive rate given a sensitivity of 80% (FPR80) and ROC AUC. RESULTS: Mean FPR80 for both datasets was 0.016 [95% confidence interval (CI), 0.008-0.024] for C 1 C 2, 0.136 (95% CI, 0.092-0.180) for C 1, 0.068 (95% CI, 0.049-0.087) for C 2, 0.462 (95% CI, 0.425-0.499) for F 1 F 2, 0.832 (95% CI, 0.797-0.868) for F 1, 0.176 (95% CI, 0.150-0.203) for F 2, 0.159 (95% CI, 0.114-0.204) for DWI max, 0.731 (95% CI, 0.692-0.770) for ADC, and 0.684 (95% CI, 0.660-0.709) for K app. Mean ROC AUC for C 1 C 2 was 0.984 (95% CI, 0.977-0.991). CONCLUSIONS: The C 1 C 2 parameter of the three-component model yields a clinically useful discrimination between cancer and healthy breast tissue, superior to other DW-MRI methods and obliviating predefining lesions. This novel DW-MRI method may serve as noncontrast alternative to standard-of-care dynamic contrast-enhanced MRI.


Assuntos
Neoplasias da Mama/diagnóstico , Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/patologia , Neoplasias da Mama/patologia , Conjuntos de Dados como Assunto , Diagnóstico Diferencial , Estudos de Viabilidade , Feminino , Humanos , Pessoa de Meia-Idade , Curva ROC , Adulto Jovem
11.
Cancer Res ; 80(16): 3424-3435, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32595135

RESUMO

Noninvasive early indicators of treatment response are crucial to the successful delivery of precision medicine in children with cancer. Neuroblastoma is a common solid tumor of young children that arises from anomalies in neural crest development. Therapeutic approaches aiming to destabilize MYCN protein, such as small-molecule inhibitors of Aurora A and mTOR, are currently being evaluated in early phase clinical trials in children with high-risk MYCN-driven disease, with limited ability to evaluate conventional pharmacodynamic biomarkers of response. T1 mapping is an MRI scan that measures the proton spin-lattice relaxation time T1. Using a multiparametric MRI-pathologic cross-correlative approach and computational pathology methodologies including a machine learning-based algorithm for the automatic detection and classification of neuroblasts, we show here that T1 mapping is sensitive to the rich histopathologic heterogeneity of neuroblastoma in the Th-MYCN transgenic model. Regions with high native T1 corresponded to regions dense in proliferative undifferentiated neuroblasts, whereas regions characterized by low T1 were rich in apoptotic or differentiating neuroblasts. Reductions in tumor-native T1 represented a sensitive biomarker of response to treatment-induced apoptosis with two MYCN-targeted small-molecule inhibitors, Aurora A kinase inhibitor alisertib (MLN8237) and mTOR inhibitor vistusertib (AZD2014). Overall, we demonstrate the potential of T1 mapping, a scan readily available on most clinical MRI scanners, to assess response to therapy and guide clinical trials for children with neuroblastoma. The study reinforces the potential role of MRI-based functional imaging in delivering precision medicine to children with neuroblastoma. SIGNIFICANCE: This study shows that MRI-based functional imaging can detect apoptotic responses to MYCN-targeted small-molecule inhibitors in a genetically engineered murine model of MYCN-driven neuroblastoma.


Assuntos
Benzamidas/uso terapêutico , Morfolinas/uso terapêutico , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Algoritmos , Animais , Azepinas/uso terapêutico , Criança , Feminino , Humanos , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/patologia , Medicina de Precisão/métodos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Tempo , Resultado do Tratamento
12.
Magn Reson Med ; 84(2): 1011-1023, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31975448

RESUMO

PURPOSE: To evaluate different non-Gaussian representations for the diffusion-weighted imaging (DWI) signal in the b-value range 200 to 3000 s/mm2 in benign and malignant breast lesions. METHODS: Forty-three patients diagnosed with benign (n = 18) or malignant (n = 25) tumors of the breast underwent DWI (b-values 200, 600, 1200, 1800, 2400, and 3000 s/mm2 ). Six different representations were fit to the average signal from regions of interest (ROIs) at different b-value ranges. Quality of fit was assessed by the corrected Akaike information criterion (AICc), and the Friedman test was used for assessing representation ranks. The area under the curve (AUC) of receiver operating characteristic curves were used to evaluate the power of derived parameters to differentiate between malignant and benign lesions. The lesion ROI was divided in central and peripheral parts to assess potential effect of heterogeneity. Sensitivity to noise-floor correction was also evaluated. RESULTS: The Padé exponent was ranked as the best based on AICc, whereas 3 models (kurtosis, fractional, and biexponential) achieved the highest AUC = 0.99 for lesion differentiation. The monoexponential model at bmax = 600 s/mm2 already provides AUC = 0.96, with considerably shorter acquisition time and simpler analysis. Significant differences between central and peripheral parts of lesions were found in malignant lesions. The mono- and biexponential models were most stable against varying degrees of noise-floor correction. CONCLUSION: Non-Gaussian representations are required for fitting of the DWI curve at high b-values in breast lesions. However, the added clinical value from the high b-value data for differentiation of benign and malignant lesions is not clear.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Humanos , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
MAGMA ; 33(2): 317-328, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31562584

RESUMO

OBJECTIVES: To investigate the reliability of simultaneous positron emission tomography and magnetic resonance imaging (PET/MRI)-derived biomarkers using semi-automated Gaussian mixture model (GMM) segmentation on PET images, against conventional manual tumor segmentation on dynamic contrast-enhanced (DCE) images. MATERIALS AND METHODS: Twenty-four breast cancer patients underwent PET/MRI (following 18F-fluorodeoxyglucose (18F-FDG) injection) at baseline and during neoadjuvant treatment, yielding 53 data sets (24 untreated, 29 treated). Two-dimensional tumor segmentation was performed manually on DCE-MRI images (manual DCE) and using GMM with corresponding PET images (GMM-PET). Tumor area and mean apparent diffusion coefficient (ADC) derived from both segmentation methods were compared, and spatial overlap between the segmentations was assessed with Dice similarity coefficient and center-of-gravity displacement. RESULTS: No significant differences were observed between mean ADC and tumor area derived from manual DCE segmentation and GMM-PET. There were strong positive correlations for tumor area and ADC derived from manual DCE and GMM-PET for untreated and treated lesions. The mean Dice score for GMM-PET was 0.770 and 0.649 for untreated and treated lesions, respectively. DISCUSSION: Using PET/MRI, tumor area and mean ADC value estimated with a GMM-PET can replicate manual DCE tumor definition from MRI for monitoring neoadjuvant treatment response in breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Neoplasias da Mama/tratamento farmacológico , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Imagem Multimodal , Distribuição Normal , Reconhecimento Automatizado de Padrão , Estudos Prospectivos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes
15.
J Magn Reson Imaging ; 51(6): 1868-1878, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31837076

RESUMO

BACKGROUND: Increased deposition and reorientation of stromal collagen fibers are associated with breast cancer progression and invasiveness. Diffusion-weighted imaging (DWI) may be sensitive to the collagen fiber organization in the stroma and could provide important biomarkers for breast cancer characterization. PURPOSE: To understand how collagen fibers influence water diffusion in vivo and evaluate the relationship between collagen content and the apparent diffusion coefficient (ADC) and the signal fractions of the biexponential model using a high b-value scheme. STUDY TYPE: Prospective. SUBJECTS/SPECIMENS: Forty-five patients with benign (n = 8), malignant (n = 36), and ductal carcinoma in situ (n = 1) breast tumors. Lesions and normal fibroglandular tissue (n = 9) were analyzed using sections of formalin-fixed, paraffin-embedded tissue stained with hematoxylin, erythrosine, and saffron. FIELD STRENGTH/SEQUENCE: MRI (3T) protocols: Protocol I: Twice-refocused spin-echo echo-planar imaging with: echo time (TE) 85 msec; repetition time (TR) 9300/11600 msec; matrix 90 × 90 × 60; voxel size 2 × 2 × 2.5 mm3 ; b-values: 0 and 700 s/mm2 . Protocol II: Stejskal-Tanner spin-echo echo-planar imaging with: TE: 88 msec; TR: 10600/11800 msec, matrix 90 × 90 × 60; voxel size 2 × 2 × 2.5 mm3 ; b-values [0, 200, 600, 1200, 1800, 2400, 3000] s/mm2 . ASSESSMENT: Area fractions of cellular and collagen content in histologic sections were quantified using whole-slide image analysis and compared with the corresponding DWI parameters. STATISTICAL TESTS: Correlations were assessed using Pearson's r. Univariate analysis of group median values was done using the Mann-Whitney U-test. RESULTS: Collagen content correlated with the fast signal fraction (r = 0.67, P < 0.001) and ADC (r = 0.58, P < 0.001) and was lower (P < 0.05) in malignant lesions than benign and normal tissues. Cellular content correlated inversely with the fast signal fraction (r = -0.67, P < 0.001) and ADC (r = -0.61, P < 0.001) and was different (P < 0.05) between malignant, benign, and normal tissues. DATA CONCLUSION: Our findings suggest stromal collagen content increases diffusivity observed by MRI and is associated with higher ADC and fast signal fraction of the biexponential model. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1868-1878.


Assuntos
Neoplasias da Mama , Interpretação de Imagem Assistida por Computador , Neoplasias da Mama/diagnóstico por imagem , Colágeno , Imagem de Difusão por Ressonância Magnética , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes
16.
J Magn Reson Imaging ; 50(5): 1478-1488, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31070842

RESUMO

BACKGROUND: Diffusion-weighted MRI (DWI) has potential to noninvasively characterize breast cancer lesions; models such as intravoxel incoherent motion (IVIM) provide pseudodiffusion parameters that reflect tissue perfusion, but are dependent on the details of acquisition and analysis strategy. PURPOSE: To examine the effect of fitting algorithms, including conventional least-squares (LSQ) and segmented (SEG) methods as well as Bayesian methods with global shrinkage (BSP) and local spatial (FBM) priors, on the power of IVIM parameters to differentiate benign and malignant breast lesions. STUDY TYPE: Prospective patient study. SUBJECTS: 61 patients with confirmed breast lesions. FIELD STRENGTH/SEQUENCE: DWI (bipolar SE-EPI, 13 b values) was included in a clinical MR protocol including T2 -weighted and dynamic contrast-enhanced MRI on a 3T scanner. ASSESSMENT: The IVIM model was fitted voxelwise in lesion regions of interest (ROIs), and derived parameters were compared across methods within benign and malignant subgroups (correlation, coefficients of variation). Area under receiver operator characteristic curves (ROC AUCs) were calculated to determine discriminatory power of parameter combinations from all fitting methods. STATISTICAL TESTS: Kruskal-Wallis, Mann-Whitney, Pearson correlation. RESULTS: All methods provided useful IVIM parameters; D was well-correlated across all methods (r > 0.8), with a wider range for f and D* (0.3-0.7). Fitting methods gave detectable differences in parameters, but all showed increased f and decreased D in malign lesions. D was the most discriminatory single parameter, with LSQ performing least well (AUC 0.83). In general, ROC AUCs were maximized by the inclusion of pseudodiffusion parameters, and by the use of Bayesian methods incorporating prior information (maximum AUC of 0.92 for BSP). DATA CONCLUSION: DWI performs well at classifying breast lesions, but careful consideration of analysis procedure can improve performance. D is the most discriminatory single parameter, but including pseudodiffusion parameters (f and D*) increases ROC AUC. Bayesian methods outperformed conventional least-squares and segmented fitting methods for breast lesion classification. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1478-1488.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Adulto , Idoso , Algoritmos , Teorema de Bayes , Feminino , Humanos , Análise dos Mínimos Quadrados , Pessoa de Meia-Idade , Movimento (Física) , Distribuição Normal , Perfusão , Estudos Prospectivos , Curva ROC , Reprodutibilidade dos Testes , Adulto Jovem
17.
Pediatr Hematol Oncol ; 36(2): 103-112, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30978130

RESUMO

Objectives: Diffusion-weighted magnetic resonance imaging (DW-MRI) offers potential to monitor response and predict survival in high-grade gliomas (HGG) and diffuse intrinsic pontine gliomas (DIPG). We hypothesized that post-radiotherapy DW-MRI may provide prognostic imaging biomarkers in children and young adults with these tumors. Methods: Patients aged ≤21 years diagnosed between 2005 and 2012 were eligible. The tumor median apparent diffusion coefficient (ADC) and its 5th percentile (C5-ADC) were determined at the first post-radiotherapy scan and at the time of radiological progression. DW-MRI parameters were correlated with survival endpoints, temozolomide use and pseudoprogression, when it occurred. Results: Out of 40 patients (20 HGG, 20 DIPG), 23 had evaluable DW-MRI post-radiotherapy and 25 at radiological progression. There were 6 episodes of pseudoprogression. Hazard ratios (95%CI) for progression-free survival were 0.998 (0.993-1.003) for median ADC and 1.003 (0.996-1.010) for C5-ADC. Hazard ratios (95%CI) for overall survival were 1.0009 (0.996-1.006) for median ADC and 0.998 (0.992-1.004) for C5-ADC. Post-radiotherapy median and C5-ADC values were not significantly different between patients treated with radiotherapy alone versus radiotherapy/temozolomide. The median and C5-ADC values were not significantly different at the time of pseudoprogression compared to those at tumor progression. Conclusions: Post-radiotherapy median ADC and C5-ADC were not prognostic, nor able to differentiate radiosensitization with temozolomide or occurrence of pseudoprogression in this cohort of HGG and DIPG patients. Further exploration of alternative DW parameters, study timepoints or data modeling may contribute to the development of prognostic/predictive imaging biomarkers for children and young adults with HGG or DIPG.


Assuntos
Neoplasias Encefálicas/radioterapia , Imagem de Difusão por Ressonância Magnética , Glioma/radioterapia , Substância Branca/patologia , Adolescente , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/mortalidade , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/radioterapia , Criança , Pré-Escolar , Terapia Combinada , Difusão , Progressão da Doença , Feminino , Glioma/tratamento farmacológico , Glioma/mortalidade , Glioma/patologia , Humanos , Masculino , Prognóstico , Modelos de Riscos Proporcionais , Temozolomida/uso terapêutico , Adulto Jovem
18.
Cancer Res ; 79(11): 2978-2991, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877107

RESUMO

Childhood neuroblastoma is a hypervascular tumor of neural origin, for which antiangiogenic drugs are currently being evaluated; however, predictive biomarkers of treatment response, crucial for successful delivery of precision therapeutics, are lacking. We describe an MRI-pathologic cross-correlative approach using intrinsic susceptibility (IS) and susceptibility contrast (SC) MRI to noninvasively map the vascular phenotype in neuroblastoma Th-MYCN transgenic mice treated with the vascular endothelial growth factor receptor inhibitor cediranib. We showed that the transverse MRI relaxation rate R 2* (second-1) and fractional blood volume (fBV, %) were sensitive imaging biomarkers of hemorrhage and vascular density, respectively, and were also predictive biomarkers of response to cediranib. Comparison with MRI and pathology from patients with MYCN-amplified neuroblastoma confirmed the high degree to which the Th-MYCN model vascular phenotype recapitulated that of the clinical phenotype, thereby supporting further evaluation of IS- and SC-MRI in the clinic. This study reinforces the potential role of functional MRI in delivering precision medicine to children with neuroblastoma. SIGNIFICANCE: This study shows that functional MRI predicts response to vascular-targeted therapy in a genetically engineered murine model of neuroblastoma.


Assuntos
Inibidores da Angiogênese/farmacologia , Imageamento por Ressonância Magnética/métodos , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/tratamento farmacológico , Quinazolinas/farmacologia , Animais , Criança , Pré-Escolar , Meios de Contraste , Feminino , Humanos , Lactente , Masculino , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc/genética , Neoplasias Experimentais , Neuroblastoma/irrigação sanguínea , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia , Resultado do Tratamento
19.
Nephrol Dial Transplant ; 33(suppl_2): ii41-ii50, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137583

RESUMO

This systematic review, initiated by the European Cooperation in Science and Technology Action Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease (PARENCHIMA), focuses on potential clinical applications of magnetic resonance imaging in renal non-tumour disease using magnetic resonance relaxometry (MRR), specifically, the measurement of the independent quantitative magnetic resonance relaxation times T1 and T2 at 1.5 and 3Tesla (T), respectively. Healthy subjects show a distinguishable cortico-medullary differentiation (CMD) in T1 and a slight CMD in T2. Increased cortical T1 values, that is, reduced T1 CMD, were reported in acute allograft rejection (AAR) and diminished T1 CMD in chronic allograft rejection. However, ambiguous findings were reported and AAR could not be sufficiently differentiated from acute tubular necrosis and cyclosporine nephrotoxicity. Despite this, one recent quantitative study showed in renal transplants a direct correlation between fibrosis and T1 CMD. Additionally, various renal diseases, including renal transplants, showed a moderate to strong correlation between T1 CMD and renal function. Recent T2 studies observed increased values in renal transplants compared with healthy subjects and in early-stage autosomal dominant polycystic kidney disease (ADPKD), which could improve diagnosis and progression assessment compared with total kidney volume alone in early-stage ADPKD. Renal MRR is suggested to be sensitive to renal perfusion, ischaemia/oxygenation, oedema, fibrosis, hydration and comorbidities, which reduce specificity. Due to the lack of standardization in patient preparation, acquisition protocols and adequate patient selection, no widely accepted reference values are currently available. Therefore this review encourages efforts to optimize and standardize (multi-parametric) protocols to increase specificity and to tap the full potential of renal MRR in future research.


Assuntos
Biomarcadores/análise , Nefropatias/patologia , Rim/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Guias de Prática Clínica como Assunto/normas , Progressão da Doença , Humanos
20.
Eur Radiol ; 28(4): 1642-1653, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29038934

RESUMO

OBJECTIVES: To determine the ability of multi-parametric, endogenous contrast MRI to detect and quantify fibrosis in a chemically-induced rat model of mammary carcinoma. METHODS: Female Sprague-Dawley rats (n=18) were administered with N-methyl-N-nitrosourea; resulting mammary carcinomas underwent nine-b-value diffusion-weighted (DWI), ultrashort-echo (UTE) and magnetisation transfer (MT) magnetic resonance imaging (MRI) on a clinical 1.5T platform, and associated quantitative MR parameters were calculated. Excised tumours were histologically assessed for degree of necrosis, collagen, hypoxia and microvessel density. Significance level adjusted for multiple comparisons was p=0.0125. RESULTS: Significant correlations were found between MT parameters and degree of picrosirius red staining (r > 0.85, p < 0.0002 for ka and δ, r < -0.75, p < 0.001 for T1 and T1s, Pearson), indicating that MT is sensitive to collagen content in mammary carcinoma. Picrosirius red also correlated with the DWI parameter fD* (r=0.801, p=0.0004) and conventional gradient-echo T2* (r=-0.660, p=0.0055). Percentage necrosis correlated moderately with ultrashort/conventional-echo signal ratio (r=0.620, p=0.0105). Pimonidazole adduct (hypoxia) and CD31 (microvessel density) staining did not correlate with any MR parameter assessed. CONCLUSIONS: Magnetisation transfer MRI successfully detects collagen content in mammary carcinoma, supporting inclusion of MT imaging to identify fibrosis, a prognostic marker, in clinical breast MRI examinations. KEY POINTS: • Magnetisation transfer imaging is sensitive to collagen content in mammary carcinoma. • Magnetisation transfer imaging to detect fibrosis in mammary carcinoma fibrosis is feasible. • IVIM diffusion does not correlate with microvessel density in preclinical mammary carcinoma.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/patologia , Animais , Meios de Contraste , Feminino , Fibrose/diagnóstico por imagem , Humanos , Necrose/diagnóstico por imagem , Nitroimidazóis , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA