Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Magn Reson Med ; 87(4): 1938-1951, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904726

RESUMO

PURPOSE: Restriction spectrum imaging (RSI) decomposes the diffusion-weighted MRI signal into separate components of known apparent diffusion coefficients (ADCs). The number of diffusion components and optimal ADCs for RSI are organ-specific and determined empirically. The purpose of this work was to determine the RSI model for breast tissues. METHODS: The diffusion-weighted MRI signal was described using a linear combination of multiple exponential components. A set of ADC values was estimated to fit voxels in cancer and control ROIs. Later, the signal contributions of each diffusion component were estimated using these fixed ADC values. Relative-fitting residuals and Bayesian information criterion were assessed. Contrast-to-noise ratio between cancer and fibroglandular tissue in RSI-derived signal contribution maps was compared to DCE imaging. RESULTS: A total of 74 women with breast cancer were scanned at 3.0 Tesla MRI. The fitting residuals of conventional ADC and Bayesian information criterion suggest that a 3-component model improves the characterization of the diffusion signal over a biexponential model. Estimated ADCs of triexponential model were D1,3 = 0, D2,3 = 1.5 × 10-3 , and D3,3 = 10.8 × 10-3 mm2 /s. The RSI-derived signal contributions of the slower diffusion components were larger in tumors than in fibroglandular tissues. Further, the contrast-to-noise and specificity at 80% sensitivity of DCE and a subset of RSI-derived maps were equivalent. CONCLUSION: Breast diffusion-weighted MRI signal was best described using a triexponential model. Tumor conspicuity in breast RSI model is comparable to that of DCE without the use of exogenous contrast. These data may be used as differential features between healthy and malignant breast tissues.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Teorema de Bayes , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade
2.
NMR Biomed ; 34(7): e4508, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33738878

RESUMO

Diffusion-weighted MRI (DWI) is an important tool for oncology research, with great clinical potential for the classification and monitoring of breast lesions. The utility of parameters derived from DWI, however, is influenced by specific analysis choices. The purpose of this study was to critically evaluate repeatability and curve-fitting performance of common DWI signal representations, for a prospective cohort of patients with benign breast lesions. Twenty informed, consented patients with confirmed benign breast lesions underwent repeated DWI (3 T) using: sagittal single-shot spin-echo echo planar imaging, bipolar encoding, TR/TE: 11,600/86 ms, FOV: 180 x 180 mm, matrix: 90 x 90, slices: 60 x 2.5 mm, iPAT: GRAPPA 2, fat suppression, and 13 b-values: 0-700 s/mm2 . A phase-reversed scan (b = 0 s/mm2 ) was acquired for distortion correction. Voxel-wise repeat-measures coefficients of variation (CoVs) were derived for monoexponential (apparent diffusion coefficient [ADC]), biexponential (intravoxel incoherent motion: f, D, D*) and stretched exponential (α, DDC) across the parameter histograms for lesion regions of interest (ROIs). Goodness-of-fit for each representation was assessed by Bayesian information criterion. The volume of interest (VOI) definition was repeatable (CoV 13.9%). Within lesions, and across both visits and the cohort, there was no dominant best-fit model, with all representations giving the best fit for a fraction of the voxels. Diffusivity measures from the signal representations (ADC, D, DDC) all showed good repeatability (CoV < 10%), whereas parameters associated with pseudodiffusion (f, D*) performed poorly (CoV > 50%). The stretching exponent α was repeatable (CoV < 12%). This pattern of repeatability was consistent over the central part of the parameter percentiles. Assumptions often made in diffusion studies about analysis choices will influence the detectability of changes, potentially obscuring useful information. No single signal representation prevails within or across lesions, or across repeated visits; parameter robustness is therefore a critical consideration. Our results suggest that stretched exponential representation is more repeatable than biexponential, with pseudodiffusion parameters unlikely to provide clinically useful biomarkers.


Assuntos
Doenças Mamárias/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/estatística & dados numéricos , Adulto , Teorema de Bayes , Biópsia com Agulha de Grande Calibre , Doenças Mamárias/patologia , Neoplasias da Mama/patologia , Estudos de Coortes , Feminino , Fibroadenoma/patologia , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes
3.
Methods Mol Biol ; 2216: 3-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33475991

RESUMO

Renal MRI holds incredible promise for making a quantum leap in improving diagnosis and care of patients with a multitude of diseases, by moving beyond the limitations and restrictions of current routine clinical practice. Clinical and preclinical renal MRI is advancing with ever increasing rapidity, and yet, aside from a few examples of renal MRI in routine use, it is still not good enough. Several roadblocks are still delaying the pace of progress, particularly inefficient education of renal MR researchers, and lack of harmonization of approaches that limits the sharing of results among multiple research groups.Here we aim to address these limitations for preclinical renal MRI (predominantly in small animals), by providing a comprehensive collection of more than 40 publications that will serve as a foundational resource for preclinical renal MRI studies. This includes chapters describing the fundamental principles underlying a variety of renal MRI methods, step-by-step protocols for executing renal MRI studies, and detailed guides for data analysis. This collection will serve as a crucial part of a roadmap toward conducting renal MRI studies in a robust and reproducible way, that will promote the standardization and sharing of data.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Assuntos
Biomarcadores/análise , Nefropatias/classificação , Nefropatias/patologia , Rim/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Guias de Prática Clínica como Assunto/normas , Progressão da Doença , Humanos , Nefropatias/terapia , Reprodutibilidade dos Testes
4.
Methods Mol Biol ; 2216: 187-204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476001

RESUMO

The specialized function of the kidney is reflected in its unique structure, characterized by juxtaposition of disorganized and ordered elements, including renal glomerula, capillaries, and tubules. The key role of the kidney in blood filtration, and changes in filtration rate and blood flow associated with pathological conditions, make it possible to investigate kidney function using the motion of water molecules in renal tissue. Diffusion-weighted imaging (DWI) is a versatile modality that sensitizes observable signal to water motion, and can inform on the complexity of the tissue microstructure. Several DWI acquisition strategies are available, as are different analysis strategies, and models that attempt to capture not only simple diffusion effects, but also perfusion, compartmentalization, and anisotropy. This chapter introduces the basic concepts of DWI alongside common acquisition schemes and models, and gives an overview of specific DWI applications for animal models of renal disease.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


Assuntos
Biomarcadores/análise , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Monitorização Fisiológica/métodos , Animais , Humanos , Software
5.
Methods Mol Biol ; 2216: 419-428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476014

RESUMO

Renal diffusion-weighted imaging (DWI) can be used to obtain information on the microstructure of kidney tissue, and has the potential to provide MR-biomarkers for functional renal imaging. Here we describe in a step-by-step experimental protocol the MRI method for measuring renal diffusion coefficients in rodents using ADC or IVIM models. Both methods provide quantification of renal diffusion coefficients; however, IVIM, a more complex model, allows for the calculation of the pseudodiffusion and fraction introduced by tissue vascular and tubular components. DWI provides information of renal microstructure contributing to the understanding of the physiology and the underlying processes that precede the beginning of pathologies.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Assuntos
Biomarcadores/análise , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Animais , Meios de Contraste , Camundongos , Monitorização Fisiológica , Software
6.
Methods Mol Biol ; 2216: 611-635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476027

RESUMO

Analysis of renal diffusion-weighted imaging (DWI) data to derive markers of tissue properties requires careful consideration of the type, extent, and limitations of the acquired data. Alongside data quality and general suitability for quantitative analysis, choice of diffusion model, fitting algorithm, and processing steps can have consequences for the precision, accuracy, and reliability of derived diffusion parameters. Here we introduce and discuss important steps for diffusion-weighted image processing, and in particular give example analysis protocols and pseudo-code for analysis using the apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) models. Following an overview of general principles, we provide details of optional steps, and steps for validation of results. Illustrative examples are provided, together with extensive notes discussing wider context of individual steps, and notes on potential pitfalls.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and experimental procedure.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Monitorização Fisiológica/métodos , Animais , Software
7.
MAGMA ; 33(2): 317-328, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31562584

RESUMO

OBJECTIVES: To investigate the reliability of simultaneous positron emission tomography and magnetic resonance imaging (PET/MRI)-derived biomarkers using semi-automated Gaussian mixture model (GMM) segmentation on PET images, against conventional manual tumor segmentation on dynamic contrast-enhanced (DCE) images. MATERIALS AND METHODS: Twenty-four breast cancer patients underwent PET/MRI (following 18F-fluorodeoxyglucose (18F-FDG) injection) at baseline and during neoadjuvant treatment, yielding 53 data sets (24 untreated, 29 treated). Two-dimensional tumor segmentation was performed manually on DCE-MRI images (manual DCE) and using GMM with corresponding PET images (GMM-PET). Tumor area and mean apparent diffusion coefficient (ADC) derived from both segmentation methods were compared, and spatial overlap between the segmentations was assessed with Dice similarity coefficient and center-of-gravity displacement. RESULTS: No significant differences were observed between mean ADC and tumor area derived from manual DCE segmentation and GMM-PET. There were strong positive correlations for tumor area and ADC derived from manual DCE and GMM-PET for untreated and treated lesions. The mean Dice score for GMM-PET was 0.770 and 0.649 for untreated and treated lesions, respectively. DISCUSSION: Using PET/MRI, tumor area and mean ADC value estimated with a GMM-PET can replicate manual DCE tumor definition from MRI for monitoring neoadjuvant treatment response in breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Neoplasias da Mama/tratamento farmacológico , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Imagem Multimodal , Distribuição Normal , Reconhecimento Automatizado de Padrão , Estudos Prospectivos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes
9.
Nephrol Dial Transplant ; 33(suppl_2): ii41-ii50, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137583

RESUMO

This systematic review, initiated by the European Cooperation in Science and Technology Action Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease (PARENCHIMA), focuses on potential clinical applications of magnetic resonance imaging in renal non-tumour disease using magnetic resonance relaxometry (MRR), specifically, the measurement of the independent quantitative magnetic resonance relaxation times T1 and T2 at 1.5 and 3Tesla (T), respectively. Healthy subjects show a distinguishable cortico-medullary differentiation (CMD) in T1 and a slight CMD in T2. Increased cortical T1 values, that is, reduced T1 CMD, were reported in acute allograft rejection (AAR) and diminished T1 CMD in chronic allograft rejection. However, ambiguous findings were reported and AAR could not be sufficiently differentiated from acute tubular necrosis and cyclosporine nephrotoxicity. Despite this, one recent quantitative study showed in renal transplants a direct correlation between fibrosis and T1 CMD. Additionally, various renal diseases, including renal transplants, showed a moderate to strong correlation between T1 CMD and renal function. Recent T2 studies observed increased values in renal transplants compared with healthy subjects and in early-stage autosomal dominant polycystic kidney disease (ADPKD), which could improve diagnosis and progression assessment compared with total kidney volume alone in early-stage ADPKD. Renal MRR is suggested to be sensitive to renal perfusion, ischaemia/oxygenation, oedema, fibrosis, hydration and comorbidities, which reduce specificity. Due to the lack of standardization in patient preparation, acquisition protocols and adequate patient selection, no widely accepted reference values are currently available. Therefore this review encourages efforts to optimize and standardize (multi-parametric) protocols to increase specificity and to tap the full potential of renal MRR in future research.


Assuntos
Biomarcadores/análise , Nefropatias/patologia , Rim/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Guias de Prática Clínica como Assunto/normas , Progressão da Doença , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA