Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(40): e2410594121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39316053

RESUMO

Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane. The structural requirements to translocate the adhesin through the usher pore from the periplasm to the extracellular space remains incompletely understood. Here, we present a cryoelectron microscopy structure of a quaternary tip complex in the type 1 pilus system from Escherichia coli, which consists of the usher FimD, chaperone FimC, adhesin FimH, and the tip adapter FimF. In this structure, the usher FimD is caught in the act of secreting its cognate adhesin FimH. Comparison with previous structures depicting the adhesin either first entering or having completely exited the usher pore reveals remarkable structural plasticity of the two-domain adhesin during translocation. Moreover, a piliation assay demonstrated that the structural plasticity, enabled by a flexible linker between the two domains, is a prerequisite for adhesin translocation through the usher pore and thus pilus biogenesis. Overall, this study provides molecular details of adhesin translocation across the outer membrane and elucidates a unique conformational state adopted by the adhesin during stepwise secretion through the usher pore. This study elucidates fundamental aspects of FimH and usher dynamics critical in urinary tract infections and is leading to antibiotic-sparing therapeutics.


Assuntos
Adesinas de Escherichia coli , Microscopia Crioeletrônica , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Fímbrias , Fímbrias Bacterianas , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Fímbrias Bacterianas/metabolismo , Adesinas de Escherichia coli/metabolismo , Adesinas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Modelos Moleculares , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/química
2.
Proc Natl Acad Sci U S A ; 121(39): e2409655121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39288182

RESUMO

Klebsiella pneumoniae is an important pathogen causing difficult-to-treat urinary tract infections (UTIs). Over 1.5 million women per year suffer from recurrent UTI, reducing quality of life and causing substantial morbidity and mortality, especially in the hospital setting. Uropathogenic E. coli (UPEC) is the most prevalent cause of UTI. Like UPEC, K. pneumoniae relies on type 1 pili, tipped with the mannose-binding adhesin FimH, to cause cystitis. However, K. pneumoniae FimH is a poor binder of mannose, despite a mannose-binding pocket identical to UPEC FimH. FimH is composed of two domains that are in an equilibrium between tense (low-affinity) and relaxed (high-affinity) conformations. Substantial interdomain interactions in the tense conformation yield a low-affinity, deformed mannose-binding pocket, while domain-domain interactions are broken in the relaxed state, resulting in a high-affinity binding pocket. Using crystallography, we identified the structural basis by which domain-domain interactions direct the conformational equilibrium of K. pneumoniae FimH, which is strongly shifted toward the low-affinity tense state. Removal of the pilin domain restores mannose binding to the lectin domain, thus showing that poor mannose binding by K. pneumoniae FimH is not an inherent feature of the mannose-binding pocket. Phylogenetic analyses of K. pneumoniae genomes found that FimH sequences are highly conserved. However, we surveyed a collection of K. pneumoniae isolates from patients with long-term indwelling catheters and identified isolates that possessed relaxed higher-binding FimH variants, which increased K. pneumoniae fitness in bladder infection models, suggesting that long-term residence within the urinary tract may select for higher-binding FimH variants.


Assuntos
Proteínas de Fímbrias , Klebsiella pneumoniae , Manose , Infecções Urinárias , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Infecções Urinárias/microbiologia , Manose/metabolismo , Humanos , Conformação Proteica , Adesinas de Escherichia coli/metabolismo , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/genética , Sítios de Ligação , Domínios Proteicos , Infecções por Klebsiella/microbiologia , Cristalografia por Raios X , Modelos Moleculares , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Ligação Proteica , Feminino , Fímbrias Bacterianas/metabolismo
3.
J Womens Health (Larchmt) ; 33(10): 1289-1295, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39129561

RESUMO

This report describes opportunities to address emergency preparedness to incorporate the needs of pregnant and postpartum populations. This report briefly summarizes data on the impacts of weather and climate disasters on maternal and infant health and outlines opportunities for individuals, health care providers, and public health practitioners to increase capacity to prepare for these occurrences, which are becoming more frequent and costly. Specific resources from the U.S. Centers for Disease Control and Prevention's Division of Reproductive Health are shared to support individual preparedness, communication of disaster safety messages, and emergency preparedness planning capacity among health care providers and health departments.


Assuntos
Centers for Disease Control and Prevention, U.S. , Planejamento em Desastres , Desastres , Saúde do Lactente , Tempo (Meteorologia) , Humanos , Estados Unidos , Feminino , Gravidez , Mudança Climática , Lactente , Saúde Materna , Saúde Reprodutiva , Defesa Civil , Recém-Nascido
4.
Sci Adv ; 10(31): eadn7979, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093975

RESUMO

We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens, and accelerated rates of wound healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.


Assuntos
Biofilmes , Testes de Sensibilidade Microbiana , Piridonas , Infecções dos Tecidos Moles , Infecções Estreptocócicas , Streptococcus pyogenes , Streptococcus pyogenes/efeitos dos fármacos , Animais , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções dos Tecidos Moles/microbiologia , Biofilmes/efeitos dos fármacos , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Camundongos , Piridonas/farmacologia , Piridonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Modelos Animais de Doenças , Tiazóis/farmacologia , Tiazóis/química , Dermatopatias Bacterianas/tratamento farmacológico , Dermatopatias Bacterianas/microbiologia , Feminino , Cicatrização/efeitos dos fármacos , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38953209

RESUMO

The advent of high-dimensional imaging offers new opportunities to molecularly characterize diagnostic cells in disorders that have previously relied on histopathological definitions. One example case is found in tuberous sclerosis complex (TSC), a developmental disorder characterized by systemic growth of benign tumors. Within resected brain tissues from patients with TSC, detection of abnormally enlarged balloon cells (BCs) is pathognomonic for this disorder. Though BCs can be identified by an expert neuropathologist, little is known about the specificity and broad applicability of protein markers for these cells, complicating classification of proposed BCs identified in experimental models of this disorder. Here, we report the development of a customized machine learning pipeline (BAlloon IDENtifier; BAIDEN) that was trained to prospectively identify BCs in tissue sections using a histological stain compatible with high-dimensional cytometry. This approach was coupled to a custom 36-antibody panel and imaging mass cytometry (IMC) to explore the expression of multiple previously proposed BC marker proteins and develop a descriptor of BC features conserved across multiple tissue samples from patients with TSC. Here, we present a modular workflow encompassing BAIDEN, a custom antibody panel, a control sample microarray, and analysis pipelines-both open-source and in-house-and apply this workflow to understand the abundance, structure, and signaling activity of BCs as an example case of how high-dimensional imaging can be applied within human tissues.

6.
bioRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38712031

RESUMO

Cooperation between the circadian transcription factor (TF) CLOCK:BMAL1 and other TFs at cis-regulatory elements (CREs) is critical to daily rhythms of transcription. Yet, the modalities of this cooperation are unclear. Here, we analyzed the co-binding of multiple TFs on single DNA molecules in mouse liver using single molecule footprinting (SMF). We found that SMF reads clustered in stereotypic chromatin states that reflect distinguishable organization of TFs and nucleosomes, and that were remarkably conserved between all samples. DNA protection at CLOCK:BMAL1 binding motif (E-box) varied between CREs, from E-boxes being solely bound by CLOCK:BMAL1 to situations where other TFs competed with CLOCK:BMAL1 for E-box binding. SMF also uncovered CLOCK:BMAL1 cooperative binding at E-boxes separated by 250 bp, which structurally altered the CLOCK:BMAL1-DNA interface. Importantly, we discovered multiple nucleosomes with E-boxes at entry/exit sites that were removed upon CLOCK:BMAL1 DNA binding, thereby promoting the formation of open chromatin states that facilitate DNA binding of other TFs and that were associated with rhythmic transcription. These results demonstrate the utility of SMF for studying how CLOCK:BMAL1 and other TFs regulate stereotypical chromatin states at CREs to promote transcription.

7.
J Med Chem ; 67(5): 3668-3678, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308631

RESUMO

FmlH, a bacterial adhesin of uropathogenic Escherichia coli (UPEC), has been shown to provide a fitness advantage in colonizing the bladder during chronic urinary tract infections (UTIs). Previously reported ortho-biphenyl glycosides based on ßGal and ßGalNAc have excellent binding affinity to FmlH and potently block binding to its natural carbohydrate receptor, but they lack oral bioavailability. In this paper, we outline studies where we have optimized compounds for improved pharmacokinetics, leading to the discovery of novel analogues with good oral bioavailability. We synthesized galactosides with the anomeric O-linker replaced with more stable S- and C-linked linkers. We also investigated modifications to the GalNAc sugar and modifications to the biphenyl aglycone. We identified GalNAc 69 with an IC50 of 0.19 µM against FmlH and 53% oral bioavailability in mice. We also obtained a FimlH-bound X-ray structure of lead compound 69 (AM4085) which has potential as a new antivirulence therapeutic for UTIs.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Camundongos , Animais , Lectinas , Adesinas de Escherichia coli/química , Infecções Urinárias/tratamento farmacológico , Compostos de Bifenilo/química , Escherichia coli Uropatogênica/metabolismo , Infecções por Escherichia coli/tratamento farmacológico
8.
Nat Commun ; 15(1): 61, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168042

RESUMO

Catheter-associated urinary tract infections (CAUTIs), a common cause of healthcare-associated infections, are caused by a diverse array of pathogens that are increasingly becoming antibiotic resistant. We analyze the microbial occurrences in catheter and urine samples from 55 human long-term catheterized patients collected over one year. Although most of these patients were prescribed antibiotics over several collection periods, their catheter samples remain colonized by one or more bacterial species. Examination of a total of 366 catheter and urine samples identify 13 positive and 13 negative genus co-occurrences over 12 collection periods, representing associations that occur more or less frequently than expected by chance. We find that for many patients, the microbial species composition between collection periods is similar. In a subset of patients, we find that the most frequently sampled bacteria, Escherichia coli and Enterococcus faecalis, co-localize on catheter samples. Further, co-culture of paired isolates recovered from the same patients reveals that E. coli significantly augments E. faecalis growth in an artificial urine medium, where E. faecalis monoculture grows poorly. These findings suggest novel strategies to collapse polymicrobial CAUTI in long-term catheterized patients by targeting mechanisms that promote positive co-associations.


Assuntos
Infecções Relacionadas a Cateter , Infecções Urinárias , Humanos , Escherichia coli , Infecções Relacionadas a Cateter/microbiologia , Catéteres , Infecções Urinárias/microbiologia , Enterococcus faecalis , Bactérias
9.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260261

RESUMO

We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that have antimicrobial activities against a broad-spectrum of Gram-positive pathogens. Here we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens and accelerated rates of wound-healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.

10.
Res Sq ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609304

RESUMO

Catheter-associated urinary tract infections (CAUTIs) contribute greatly to the burden of healthcare associated infections. Acinetobacter baumannii is a Gram-negative bacterium with high levels of antibiotic resistance that is of increasing concern as a CAUTI pathogen. A. baumannii expresses fibrinogen-binding adhesins (Abp1D and Abp2D) that mediate colonization and biofilm formation on catheters, which become coated with fibrinogen upon insertion. We developed a protein subunit vaccine against Abp1DRBD and Abp2DRBD and showed that vaccination significantly reduced bladder bacterial titers in a mouse model of CAUTI. We then determined that immunity to Abp2DRBD alone was sufficient for protection. Mechanistically, we defined the B cell response to Abp2DRBD vaccination and demonstrated that immunity was transferrable to naïve mice through passive immunization with Abp2DRBD-immune sera. This work represents a novel strategy in the prevention of A. baumannii CAUTI and has an important role to play in the global fight against antimicrobial resistance.

11.
Nature ; 619(7969): 385-393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407816

RESUMO

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA , Histonas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Sequências Hélice-Alça-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Alostérica , Zíper de Leucina , Fator 3 de Transcrição de Octâmero/metabolismo , Multimerização Proteica
12.
Psychodyn Psychiatry ; 51(2): 147-151, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37260241

RESUMO

Taking the liberty of imagining the lawyer in Melville's "Bartleby, the Scrivener" as narrator/therapist and Bartleby as patient, this article, written with the therapist/reader in mind, traces the vicissitudes of countertransference and speculates on what constitutes a "good enough" therapeutic effort.


Assuntos
Literatura Moderna , Humanos , Contratransferência
13.
Am J Psychoanal ; 83(1): 22-35, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36782042

RESUMO

Freud, early in psychoanalytic history, modified hypnotic technique and recommended, in its stead, free association. This paper takes a close look at the theoretical foundations of that technique in light of theoretical developments over the past hundred plus years. It is argued that free association is similar to an asymptote, which is never quite reached. Moreover, it is argued that the direction to free associate is contraindicated in many, if not most, psychological disturbances. Guided association or avoidance of free association is sometimes required. For a limited group of patients, whose major ego functions (abstraction, integration, and reality testing), ego strengths (impulse control, affect tolerance, and containing primary process), object relations (capacities for empathy, trust, and closeness), and superego (shame/guilt) are intact, the direction to use the couch and attempt to free associate may still be quite useful. For most people who present for treatment, however, this approach is likely not beneficial. The complex arguments about the decision-making process regarding free association are discussed.


Assuntos
Associação Livre , Terapia Psicanalítica , Humanos , Ego , Superego , Culpa , Teoria Psicanalítica
14.
Proc Natl Acad Sci U S A ; 120(4): e2212694120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652481

RESUMO

Multidrug-resistant Acinetobacter baumannii infections are an urgent clinical problem and can cause difficult-to-treat nosocomial infections. During such infections, like catheter-associated urinary tract infections (CAUTI), A. baumannii rely on adhesive, extracellular fibers, called chaperone-usher pathway (CUP) pili for critical binding interactions. The A. baumannii uropathogenic strain, UPAB1, and the pan-European subclone II isolate, ACICU, use the CUP pili Abp1 and Abp2 (previously termed Cup and Prp, respectively) in tandem to establish CAUTIs, specifically to facilitate bacterial adherence and biofilm formation on the implanted catheter. Abp1 and Abp2 pili are tipped with two domain tip adhesins, Abp1D and Abp2D, respectively. We discovered that both adhesins bind fibrinogen, a critical host wound response protein that is released into the bladder upon catheterization and is subsequently deposited on the catheter. The crystal structures of the Abp1D and Abp2D receptor-binding domains were determined and revealed that they both contain a large, distally oriented pocket, which mediates binding to fibrinogen and other glycoproteins. Genetic, biochemical, and biophysical studies revealed that interactions with host proteins are governed by several critical residues in and along the edge of the binding pocket, one of which regulates the structural stability of an anterior loop motif. K34, located outside of the pocket but interacting with the anterior loop, also regulates the binding affinity of the protein. This study illuminates the mechanistic basis of the critical fibrinogen-coated catheter colonization step in A. baumannii CAUTI pathogenesis.


Assuntos
Acinetobacter baumannii , Infecções Urinárias , Humanos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Infecções Urinárias/microbiologia , Catéteres , Acinetobacter baumannii/genética , Fibrinogênio/metabolismo
15.
J Digit Imaging ; 36(2): 510-525, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36385675

RESUMO

In the human body, cancer is caused by aberrant cell proliferation. Brain tumors are created when cells in the human brain proliferate out of control. Brain tumors consist of two types: benign and malignant. The aberrant parts of benign tumors, which contain dormant tumor cells, can be cured with the appropriate medication. On the other hand, malignant tumors are tumors that contain abnormal cells and an unorganized area of these abnormal cells that cannot be treated with medication. Therefore, surgery is required to remove these brain tumors. Brain cancers are manually identified and diagnosed by a skilled radiologist using traditional procedures. It's a lengthy and error-prone procedure. As a result, it is unsuitable for emerging countries with large populations. So computer-assisted automatic identification and diagnosis of brain tumors are recommended. This work proposes and implements a CAD system for the diagnosis of brain cancers using magnetic resonance imaging (MRI). Preprocessing, segmentation, feature extraction, and classification are the stages of automatic brain MRI processing that necessitate software based on a sophisticated algorithm. Image normalization with contourlet transform (INCT) is used in the preprocessing step to remove undesirable or noisy data. The performance metrics such as PSNR, MSE, and RMSE are computed. Then, the modified hierarchical k-means with firefly clustering (MHKFC) technique is used in the segmentation step to precisely recover the afflicted (tumor) area from the preprocessed image. The enhanced monarch butterfly optimization (EMBO) is used to select and then extract the most important gray-level co-occurrence matrix feature from the segmented image. The classification task was finally completed using the adaptive neuro-fuzzy inference system (ANFIS). The overall classification accuracy is 95.4% ( BRATS 2015), 96.6% ( BRATS 2021), and 93.7% (clinical data) is obtained.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lógica Fuzzy , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Encéfalo/diagnóstico por imagem , Algoritmos , Imageamento por Ressonância Magnética/métodos
16.
Proc Natl Acad Sci U S A ; 119(43): e2210912119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252016

RESUMO

The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells. The molecular mechanism of drug-induced killing of stationary phase cells mimics aspects of fratricide observed in enterococcal biofilms, where both are mediated by the Atn autolysin and the GelE protease. In addition, combinations of sublethal concentrations of ring-fused 2-pyridones and standard-of-care antibiotics, such as vancomycin, were found to synergize to kill clinical strains of VRE. Furthermore, a broad range of antibiotic resistant Gram-positive pathogens, including those responsible for the increasing incidence of antibiotic resistant healthcare-associated infections, are susceptible to this new class of 2-pyridone antibiotics. Given the broad antibacterial activities of ring-fused 2-pyridone compounds against Gram-positive (GmP) bacteria we term these compounds GmPcides, which hold promise in combating the rising tide of antibiotic resistant Gram-positive pathogens.


Assuntos
Bactérias Gram-Positivas , Piridonas , Enterococos Resistentes à Vancomicina , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Piridonas/farmacologia , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos
17.
Nat Microbiol ; 7(5): 630-639, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35505248

RESUMO

Recurrent urinary tract infections (rUTIs) are a major health burden worldwide, with history of infection being a significant risk factor. While the gut is a known reservoir for uropathogenic bacteria, the role of the microbiota in rUTI remains unclear. We conducted a year-long study of women with (n = 15) and without (n = 16) history of rUTI, from whom we collected urine, blood and monthly faecal samples for metagenomic and transcriptomic interrogation. During the study 24 UTIs were reported, with additional samples collected during and after infection. The gut microbiome of individuals with a history of rUTI was significantly depleted in microbial richness and butyrate-producing bacteria compared with controls, reminiscent of other inflammatory conditions. However, Escherichia coli gut and bladder populations were comparable between cohorts in both relative abundance and phylogroup. Transcriptional analysis of peripheral blood mononuclear cells revealed expression profiles indicative of differential systemic immunity between cohorts. Altogether, these results suggest that rUTI susceptibility is in part mediated through the gut-bladder axis, comprising gut dysbiosis and differential immune response to bacterial bladder colonization, manifesting in symptoms.


Assuntos
Infecções por Escherichia coli , Microbioma Gastrointestinal , Infecções Urinárias , Disbiose , Escherichia coli , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Leucócitos Mononucleares , Masculino , Infecções Urinárias/microbiologia
18.
BMC Biol ; 20(1): 58, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236346

RESUMO

BACKGROUND: Many epidemiological studies revealed that shift work is associated with an increased risk of a number of pathologies, including cardiovascular diseases. An experimental model of shift work in rats has additionally been shown to recapitulate aspects of metabolic disorders observed in human shift workers, including increased fat content and impaired glucose tolerance, and used to demonstrate that restricting food consumption outside working hours prevents shift work-associated obesity and metabolic disturbance. However, the way distinct shift work parameters, such as type of work, quantity, and duration, affect cardiovascular function and the underlying mechanisms, remains poorly understood. Here, we used the rat as a model to characterize the effects of shift work in the heart and determine whether they can be modulated by restricting food intake during the normal active phase. RESULTS: We show that experimental shift work reprograms the heart cycling transcriptome independently of food consumption. While phases of rhythmic gene expression are distributed across the 24-h day in control rats, they are clustered towards discrete times in shift workers. Additionally, preventing food intake during shift work affects the expression level of hundreds of genes in the heart, including genes encoding components of the extracellular matrix and inflammatory markers found in transcriptional signatures associated with pressure overload and cardiac hypertrophy. Consistent with this, the heart of shift worker rats not eating during work hours, but having access to food outside of shift work, exhibits increased collagen 1 deposition and displays increased infiltration by immune cells. While maintaining food access during shift work has less effects on gene expression, genes found in transcriptional signatures of cardiac hypertrophy remain affected, and the heart of shift worker rats exhibits fibrosis without inflammation. CONCLUSIONS: Together, our findings unraveled differential effects of food consumption on remodeled transcriptional profiles of the heart in shift worker rats. They also provide insights into how shift work affects cardiac function and suggest that some interventions aiming at mitigating metabolic disorders in shift workers may have adverse effects on cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Doenças Metabólicas , Jornada de Trabalho em Turnos , Animais , Cardiomegalia , Ritmo Circadiano , Ingestão de Alimentos , Fibrose , Inflamação/genética , Ratos , Jornada de Trabalho em Turnos/efeitos adversos , Transcriptoma
19.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064085

RESUMO

Transcriptional repression drives feedback loops that are central to the generation of circadian (∼24-h) rhythms. In mammals, circadian repression of circadian locomotor output cycles kaput, and brain and muscle ARNT-like 1 (CLOCK:BMAL1)-mediated transcription is provided by a complex formed by PERIOD (PER) and CRYPTOCHROME (CRY) proteins. PER initiates transcriptional repression by binding CLK:BMAL1, which ultimately results in their removal from DNA. Although PER's ability to repress transcription is widely recognized, how PER binding triggers repression by removing CLK:BMAL1 from DNA is not known. Here, we use the monarch butterfly as a model system to address this problem because it harbors a simplified version of the CLK:BMAL1-activated circadian clock present in mammals. We report that an intact CLOCK mouse exon 19 homologous region (CLKe19r) and the histone methyltransferase TRITHORAX (TRX) are both necessary for monarch CLK:BMAL1-mediated transcriptional activation, CLK-PER interaction, and PER repression. Our results show that TRX catalytic activity is essential for CLK-PER interaction and PER repression via the methylation of a single arginine methylation site (R45) on heat shock protein 68 (HSP68). Our study reveals TRX and HSP68 as essential links between circadian activation and PER-mediated repression and suggests a potential conserved clock function for HSPs in eukaryotes.


Assuntos
Arginina/metabolismo , Borboletas/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Ritmo Circadiano , Proteínas de Choque Térmico/metabolismo , Proteínas Circadianas Period/metabolismo , Sequência de Aminoácidos , Animais , Ritmo Circadiano/genética , Sequência Conservada , Éxons , Proteínas de Choque Térmico/genética , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Modelos Biológicos , Ativação Transcricional
20.
J Vis Exp ; (190)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36591969

RESUMO

Rhythmic gene expression is a hallmark of the circadian rhythm and is essential for driving the rhythmicity of biological functions at the appropriate time of day. Studies over the last few decades have shown that rhythmic food intake (i.e., the time at which organisms eat food during the 24 h day), significantly contributes to the rhythmic regulation of gene expression in various organs and tissues throughout the body. The effects of rhythmic food intake on health and physiology have been widely studied ever since and have revealed that restricting food intake for 8 h during the active phase attenuates metabolic diseases arising from a variety of obesogenic diets. These studies often require the use of controlled methods for timing the delivery of food to animals. This manuscript describes the design and use of a low-cost and efficient system, built in-house for measuring daily food consumption as well as manipulating rhythmic food intake in mice. This system entails the use of affordable raw materials to build cages suited for food delivery, following a user-friendly handling procedure. This system can be used efficiently to feed mice on different feeding regimens such as ad libitum, time-restricted, or arrhythmic schedules, and can incorporate a high-fat diet to study its effect on behavior, physiology, and obesity. A description of how wild-type (WT) mice adapt to the different feeding regimens is provided.


Assuntos
Dieta Hiperlipídica , Obesidade , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Alimentos , Ritmo Circadiano , Ingestão de Alimentos , Comportamento Alimentar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA