Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Yeast ; 23(6): 479-86, 2006 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-16652393

RESUMO

The genome organization of the linear DNA-element pPac1-1 from Pichia acaciae was determined. It turned out to be the smallest autonomous cytoplasmic yeast plasmid known so far, consisting of only 12 646 bp, carrying the shortest terminal inverted repeats yet found (138 bp). As for other cytoplasmic linear yeast plasmids, it is characterized by a strikingly high A + T content (75.35%). Ten putative genes (open reading frames, ORFs) reside on the element, leaving only 2.9% of the sequence outside a coding region. Highest similarities of the predicted proteins were obtained for proteins encoded by the three hitherto known autonomous cytoplasmic linear yeast plasmids. Amino acid sequences correspond to predicted polypeptides encoded by ORFs 2-11 of the linear plasmids pGKL2 of Kluyveromyces lactis, pSKL of Saccharomyces kluyveri and pPE1B of Pichia etchellsii. As for the latter, ORF1 existing on the two other plasmids is lacking on pPac1-1. Consistent with cytoplasmic localization, a cytoplasmic promoter termed upstream conserved sequence (UCS) is located in front of each reading frame. RT-PCR transcript analyses for ORFs 8, 9 and 11 proved expression of such genes but functions could not be attributed. The genome organization of pPac1-1 and other autonomous linear elements was found to be almost congruent, irrespective of the accompanying smaller elements, which may or may not encode their own element-specific DNA polymerases.


Assuntos
Pichia/genética , Plasmídeos/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase , RNA Fúngico/química , RNA Fúngico/genética , Análise de Sequência de DNA
2.
FEMS Microbiol Lett ; 255(2): 321-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16448513

RESUMO

A pair of linear plasmids, pGKL1 (8.9 kb) and pGKL2 (13.4 kb), resides in the cytoplasm of Kluyveromyces lactis killer strains. The smaller element, actually conferring the killer phenotype, strictly depends on the larger autonomous pGKL2. Here, we have examined the previously uncharacterized pGKL2 open reading frame (ORF)9 (1.34 kb). Northern analysis of a killer plasmid carrying Saccharomyces cerevisiae strain applying an ORF9-specific probe revealed a single transcript closely matching the size of the ORF9 coding region. Multiple transcriptional start points, determined by primer extension analysis, are located 16 nt downstream of a conserved sequence element regarded as the cytoplasmic promoter. In vivo disruption of pGKL2/ORF9 using the cytoplasmically expressible marker-gene LEU2* resulted in the establishment of a three-plasmid system composed of the native cytoplasmic elements pGKL1/2 and a hybrid of the latter, which only remained stable under selective conditions. The native pGKL2, however, did not segregate during prolonged subcultivations, proving an essential function of ORF9 for plasmid maintenance.


Assuntos
Genes Essenciais , Genes Fúngicos , Kluyveromyces/genética , Micotoxinas/genética , Fases de Leitura Aberta/genética , Plasmídeos/genética , Transcrição Gênica , Sequência de Bases , Citoplasma/genética , Citoplasma/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Fatores Matadores de Levedura , Kluyveromyces/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Am J Hum Genet ; 74(3): 545-51, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14973782

RESUMO

This study describes the discovery of a new inherited disorder of glycosylation named "CDG-Ik." CDG-Ik (congenital disorder of glycoslyation type Ik) is based on a defect of human mannosyltransferase I (MT-I [MIM 605907]), an enzyme necessary for the elongation of dolichol-linked chitobiose during N-glycan biosynthesis. Mutations in semiconserved regions in the corresponding gene, HMT-1 (yeast homologue, Alg1), in two patients caused drastically reduced enzyme activity, leading to a severe disease with death in early infancy. One patient had a homozygous point mutation (c.773C-->T, S258L), whereas the other patient was compound heterozygous for the mutations c.773C-->T and c.1025A-->C (E342P). Glycosylation and growth of Alg1-deficient PRY56 yeast cells, showing a temperature-sensitive phenotype, could be restored by the human wild-type allele, whereas only slight restoration was observed after transformation with the patients' alleles.


Assuntos
Doenças Genéticas Inatas , Manosiltransferases/genética , Glicosilação , Humanos , Manosiltransferases/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Saccharomyces/enzimologia , Saccharomyces/genética , Saccharomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA