RESUMO
PURPOSE OF REVIEW: This review provides an overview of current knowledge and understanding of EEG neurofeedback for anxiety disorders and post-traumatic stress disorders. RECENT FINDINGS: The manifestations of anxiety disorders and post-traumatic stress disorders (PTSD) are associated with dysfunctions of neurophysiological stress axes and brain arousal circuits, which are important dimensions of the research domain criteria (RDoC). Even if the pathophysiology of these disorders is complex, one of its defining signatures is behavioral and physiological over-arousal. Interestingly, arousal-related brain activity can be modulated by electroencephalogram-based neurofeedback (EEG NF), a non-pharmacological and non-invasive method that involves neurocognitive training through a brain-computer interface (BCI). EEG NF is characterized by a simultaneous learning process where both patient and computer are involved in modifying neuronal activity or connectivity, thereby improving associated symptoms of anxiety and/or over-arousal. Positive effects of EEG NF have been described for both anxiety disorders and PTSD, yet due to a number of methodological issues, it remains unclear whether symptom improvement is the direct result of neurophysiological changes targeted by EEG NF. Thus, in this work we sought to bridge current knowledge on brain mechanisms of arousal with past and present EEG NF therapies for anxiety and PTSD. In a nutshell, we discuss the neurophysiological mechanisms underlying the effects of EEG NF in anxiety disorder and PTSD, the methodological strengths/weaknesses of existing EEG NF randomized controlled trials for these disorders, and the neuropsychological factors that may impact NF training success.
Assuntos
Neurorretroalimentação , Transtornos de Estresse Pós-Traumáticos , Transtornos de Ansiedade/terapia , Encéfalo , Eletroencefalografia , Humanos , Transtornos de Estresse Pós-Traumáticos/terapiaRESUMO
The clinical efficacy of neurofeedback is still a matter of debate. This paper analyzes the factors that should be taken into account in a transdisciplinary approach to evaluate the use of EEG NFB as a therapeutic tool in psychiatry. Neurofeedback is a neurocognitive therapy based on human-computer interaction that enables subjects to train voluntarily and modify functional biomarkers that are related to a defined mental disorder. We investigate three kinds of factors related to this definition of neurofeedback. We focus this article on EEG NFB. The first part of the paper investigates neurophysiological factors underlying the brain mechanisms driving NFB training and learning to modify a functional biomarker voluntarily. Two kinds of neuroplasticity involved in neurofeedback are analyzed: Hebbian neuroplasticity, i.e. long-term modification of neural membrane excitability and/or synaptic potentiation, and homeostatic neuroplasticity, i.e. homeostasis attempts to stabilize network activity. The second part investigates psychophysiological factors related to the targeted biomarker. It is demonstrated that neurofeedback involves clearly defining which kind of relationship between EEG biomarkers and clinical dimensions (symptoms or cognitive processes) is to be targeted. A nomenclature of accurate EEG biomarkers is proposed in the form of a short EEG encyclopedia (EEGcopia). The third part investigates human-computer interaction factors for optimizing NFB training and learning during the closed loop interaction. A model is proposed to summarize the different features that should be controlled to optimize learning. The need for accurate and reliable metrics of training and learning in line with human-computer interaction is also emphasized, including targeted biomarkers and neuroplasticity. All these factors related to neurofeedback show that it can be considered as a fertile ground for innovative research in psychiatry.
Assuntos
Eletroencefalografia , Neurorretroalimentação/métodos , Psiquiatria/métodos , Terapia Cognitivo-Comportamental/métodos , Humanos , Transtornos Mentais/terapiaRESUMO
While being very promising for a wide range of applications, mental-imagery-based brain-computer interfaces (MI-BCIs) remain barely used outside laboratories, notably due to the difficulties users encounter when attempting to control them. Indeed, 10-30% of users are unable to control MI-BCIs (so-called BCI illiteracy) while only a small proportion reach acceptable control abilities. This huge interuser variability has led the community to investigate potential predictors of performance related to users' personality and cognitive profile. Based on a literature review, we propose a classification of these MI-BCI performance predictors into three categories representing high-level cognitive concepts: (1) users' relationship with the technology (including the notions of computer anxiety and sense of agency), (2) attention, and (3) spatial abilities. We detail these concepts and their neural correlates in order to better understand their relationship with MI-BCI user-training. Consequently, we propose, by way of future prospects, some guidelines to improve MI-BCI user-training.