RESUMO
BACKGROUND: Osteoarthritis is a significant cause of disability, resulting in increased joint replacement surgeries and health care costs. Establishing benchmarks that more accurately predict surgical duration could help to decrease costs, maximize efficiency, and improve patient experience. We compared the anesthesia-controlled time (ACT) and surgery-controlled time (SCT) of primary total knee (TKA) and total hip arthroplasties (THA) between an academic medical center (AMC) and a community hospital (CH) for 2 orthopedic surgeons. OBJECTIVE: This study aims to validate and compare benchmarking times for ACT and SCT in a single patient population at both an AMC and a CH. METHODS: This retrospective 2-center observational cohort study was conducted at the University of Colorado Hospital (AMC) and UCHealth Broomfield Hospital (CH). Cases with current procedural terminology codes for THA and TKA between January 1, 2019, and December 31, 2020, were assessed. Cases with missing data were excluded. The primary outcomes were ACT and SCT. Primary outcomes were tested for association with covariates of interest. The primary covariate of interest was the location of the procedure (CH vs AMC); secondary covariates of interest included the American Society of Anesthesiologists (ASA) classification and anesthetic type. Linear regression models were used to assess the relationships. RESULTS: Two surgeons performed 1256 cases at the AMC and CH. A total of 10 THA cases and 12 TKA cases were excluded due to missing data. After controlling for surgeon, the ACT was greater at the AMC for THA by 3.77 minutes and for TKA by 3.58 minutes (P<.001). SCT was greater at the AMC for THA by 11.14 minutes and for TKA by 14.04 minutes (P<.001). ASA III/IV classification increased ACT for THA by 3.76 minutes (P<.001) and increased SCT for THA by 6.33 minutes after controlling for surgeon and location (P=.008). General anesthesia use was higher at the AMC for both THA (29.2% vs 7.3%) and TKA (23.8% vs 4.2%). No statistically significant association was observed between either ACT or SCT and anesthetic type (neuraxial or general) after adjusting for surgeon and location (all P>.05). CONCLUSIONS: We observed lower ACT and SCT at the CH for both TKA and THA after controlling for the surgeon of record and ASA classification. These findings underscore the efficiency advantages of performing primary joint replacements at the CH, showcasing an average reduction of 16 minutes in SCT and 4 minutes in ACT per case. Overall, establishing more accurate benchmarks to improve the prediction of surgical duration for THA and TKA in different perioperative environments can increase the reliability of surgical duration predictions and optimize scheduling. Future studies with study populations at multiple community hospitals and academic medical centers are needed before extrapolating these findings.
RESUMO
Published evidence over the past few decades suggests that general anesthetics could be neurotoxins especially when administered at the extremes of age. The reported pathology is not only at the morphological level when examined in very young and aged brains, given that, importantly, newly developing evidence suggests a variety of behavioral impairments. Since anesthesia is unavoidable in certain clinical settings, we should consider the development of new anesthetics. A promising and safe solution could be a new family of anesthetics referred to as neuroactive steroids. In this review, we summarize the currently available evidence regarding their anesthetic and analgesic properties.
Assuntos
Analgesia , Anestesia , Anestésicos , Neuroesteroides , Anestésicos/farmacologia , Encéfalo/patologiaRESUMO
Advances in the field of pediatric anesthesiology have enabled the performance of complex and life-saving procedures with minimal patient discomfort. However, preclinical studies over the past two decades have been reporting substantial neurotoxic potential of general anesthetics in young brain, thus challenging the safety of these agents in pediatric anesthesiology practice. Notwithstanding the overwhelming preclinical evidence, the translatability of these findings has proven inconsistent in human observational studies. The significant degree of anxiety and apprehension surrounding the uncertainty of long-term developmental outcomes following early exposure to anesthesia has prompted numerous studies around the world to investigate the putative mechanisms and translatability of preclinical findings regarding anesthesia-induced developmental neurotoxicity. Guided by the vast preclinical evidence, we aim to highlight relevant human findings presented in the currently available clinical literature.
Assuntos
Anestesia , Anestesiologia , Anestésicos , Síndromes Neurotóxicas , Criança , Humanos , Anestésicos/toxicidade , Anestesia/efeitos adversos , Encéfalo , Síndromes Neurotóxicas/etiologiaRESUMO
Preclinical studies have established that neonatal exposure to contemporary sedative/hypnotic drugs causes neurotoxicity in the developing rodent and primate brains. Our group recently reported that novel neuroactive steroid (3ß,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3ß-OH) induced effective hypnosis in both neonatal and adult rodents but did not cause significant neurotoxicity in vulnerable brain regions such as subiculum, an output region of hippocampal formation particularly sensitive to commonly used sedatives/hypnotics. Despite significant emphasis on patho-morphological changes, little is known about long-term effects on subicular neurophysiology after neonatal exposure to neuroactive steroids. Hence, we explored the lasting effects of neonatal exposure to 3ß-OH on sleep macrostructure as well as subicular neuronal oscillations in vivo and synaptic plasticity ex vivo in adolescent rats. At postnatal day 7, we exposed rat pups to either 10 mg/kg of 3ß-OH over a period of 12 h or to volume-matched cyclodextrin vehicle. At weaning age, a cohort of rats was implanted with a cortical electroencephalogram (EEG) and subicular depth electrodes. At postnatal day 30-33, we performed in vivo assessment of sleep macrostructure (divided into wake, non-rapid eye movement, and rapid eye movement sleep) and power spectra in cortex and subiculum. In a second cohort of 3ß-OH exposed animals, we conducted ex vivo studies of long-term potentiation (LTP) in adolescent rats. Overall, we found that neonatal exposure to 3ß-OH decreased subicular delta and sigma oscillations during non-rapid eye movement sleep without altering sleep macrostructure. Furthermore, we observed no significant changes in subicular synaptic plasticity. Interestingly, our previous study found that neonatal exposure to ketamine increased subicular gamma oscillations during non-rapid eye movement sleep and profoundly suppressed subicular LTP in adolescent rats. Together these results suggest that exposure to different sedative/hypnotic agents during a critical period of brain development may induce distinct functional changes in subiculum circuitry that may persist into adolescent age.
Assuntos
Neuroesteroides , Ratos , Animais , Neuroesteroides/farmacologia , Ratos Sprague-Dawley , Hipocampo , Plasticidade Neuronal , Hipnóticos e Sedativos/farmacologiaRESUMO
General anesthetics are potent neurotoxins when given during early development, causing apoptotic deletion of substantial number of neurons and persistent neurocognitive and behavioral deficits in animals and humans. The period of intense synaptogenesis coincides with the peak of susceptibility to deleterious effects of anesthetics, a phenomenon particularly pronounced in vulnerable brain regions such as subiculum. With steadily accumulating evidence confirming that clinical doses and durations of anesthetics may permanently alter the physiological trajectory of brain development, we set out to investigate the long-term consequences on dendritic morphology of subicular pyramidal neurons and expression on genes regulating the complex neural processes such as neuronal connectivity, learning, and memory. Using a well-established model of anesthetic neurotoxicity in rats and mice neonatally exposed to sevoflurane, a volatile general anesthetic commonly used in pediatric anesthesia, we report that a single 6 h of continuous anesthesia administered at postnatal day (PND) 7 resulted in lasting dysregulation in subicular mRNA levels of cAMP responsive element modulator (Crem), cAMP responsive element-binding protein 1 (Creb1), and Protein phosphatase 3 catalytic subunit alpha, a subunit of calcineurin (Ppp3ca) (calcineurin) when examined during juvenile period at PND28. Given the critical role of these genes in synaptic development and neuronal plasticity, we deployed a set of histological measurements to investigate the implications of anesthesia-induced dysregulation of gene expression on morphology and complexity of surviving subicular pyramidal neurons. Our results indicate that neonatal exposure to sevoflurane induced lasting rearrangement of subicular dendrites, resulting in higher orders of complexity and increased branching with no significant effects on the soma of pyramidal neurons. Correspondingly, changes in dendritic complexity were paralleled by the increased spine density on apical dendrites, further highlighting the scope of anesthesia-induced dysregulation of synaptic development. We conclude that neonatal sevoflurane induced persistent genetic and morphological dysregulation in juvenile rodents, which could indicate heightened susceptibility toward cognitive and behavioral disorders we are beginning to recognize as sequelae of early-in-life anesthesia.
Assuntos
Anestésicos Inalatórios , Éteres Metílicos , Humanos , Criança , Animais , Ratos , Camundongos , Sevoflurano/toxicidade , Sevoflurano/metabolismo , Calcineurina/metabolismo , Calcineurina/farmacologia , Animais Recém-Nascidos , Anestésicos Inalatórios/toxicidade , Éteres Metílicos/toxicidade , Hipocampo/metabolismoRESUMO
Over the past two decades there has been an increase in reports of attention deficit-hyperactivity disorder and perhaps autism spectrum disorder that appear to coincide with a substantial number of general anaesthesia interventions during early stages of human brain development. Is there a link between anaesthesia exposure and neurocognitive effects considering the growing body of evidence in numerous animal species, including humans, that suggests long-lasting socio-affective behavioural impairments after early exposure to general anaesthesia? Could routinely used general anaesthetics contribute as environmental toxins? Here we present the case that this notion is worthy of further consideration.
Assuntos
Anestésicos Gerais , Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Animais , Humanos , Anestesia Geral/efeitos adversos , Anestésicos Gerais/efeitos adversosRESUMO
The dorsal subiculum (dSub) is one of the key structures responsible for the formation of hippocampal memory traces but the contribution of individual ionic currents to its cognitive function is not well studied. Although we recently reported that low-voltage-activated T-type calcium channels (T-channels) are crucial for the burst firing pattern regulation in the dSub pyramidal neurons, their potential role in learning and memory remains unclear. Here we used in vivo local field potential recordings and miniscope calcium imaging in freely behaving mice coupled with pharmacological and genetic tools to address this gap in knowledge. We show that the CaV3.1 isoform of T-channels is critically involved in controlling neuronal activity in the dSub in vivo. Altering neuronal excitability by inhibiting T-channel activity markedly affects calcium dynamics, synaptic plasticity, neuronal oscillations and phase-amplitude coupling in the dSub, thereby disrupting spatial learning. These results provide an important causative link between the CaV3.1 channels, burst firing of dSub neurons and memory formation, thus further supporting the notion that changes in neuronal excitability regulate memory processing. We posit that subicular CaV3.1 T-channels could be a promising novel drug target for cognitive disorders.
Assuntos
Canais de Cálcio Tipo T , Camundongos , Animais , Canais de Cálcio Tipo T/metabolismo , Memória Espacial , Cálcio , Hipocampo/metabolismo , Plasticidade Neuronal , Potenciais de Ação/fisiologiaRESUMO
BACKGROUND: The novel synthetic neuroactive steroid (3ß,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3ß-OH) blocks T-type calcium channels but does not directly modulate neuronal γ-aminobutyric acid type A (GABAA) currents like other anaesthetic neurosteroids. As 3ß-OH has sex-specific hypnotic effects in adult rats, we studied the mechanism contributing to sex differences in its effects. METHODS: We used a combination of behavioural loss of righting reflex, neuroendocrine, pharmacokinetic, in vitro patch-clamp electrophysiology, and in vivo electrophysiological approaches in wild-type mice and in genetic knockouts of the CaV3.1 T-type calcium channel isoform to study the mechanisms by which 3ß-OH and its metabolite produces sex-specific hypnotic effects. RESULTS: Adult male mice were less sensitive to the hypnotic effects of 3ß-OH compared with female mice, and these differences appeared during development. Adult males had higher 3ß-OH brain concentrations despite being less sensitive to its hypnotic effects. Females metabolised 3ß-OH into the active GABAA receptor positive allosteric modulator (3α,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3α-OH) to a greater extent than males. The 3α-OH metabolite has T-channel blocking properties with sex-specific hypnotic and pharmacokinetic effects. Sex-dependent suppression of the cortical electroencephalogram is more pronounced with 3α-OH compared with 3ß-OH. CONCLUSIONS: The sex-specific differences in the hypnotic effect of 3ß-OH in mice are attributable to differences in its peripheral metabolism into the more potent hypnotic metabolite 3α-OH.
Assuntos
Canais de Cálcio Tipo T , Neuroesteroides , Ratos , Camundongos , Feminino , Masculino , Animais , Hipnóticos e Sedativos/farmacologia , Esteroides/farmacologia , Receptores de GABA-ARESUMO
Preclinical models demonstrate that nearly all anesthetics cause widespread neuroapoptosis in the developing brains of infant rodents and non-human primates. Anesthesia-induced developmental apoptosis is succeeded by prolonged neuropathology in the surviving neurons and lasting cognitive impairments, suggesting that anesthetics interfere with the normal developmental trajectory of the brain. However, little is known about effects of anesthetics on stereotyped axonal pruning, an important developmental algorithm that sculpts neural circuits for proper function. Here, we proposed that neonatal ketamine exposure may interfere with stereotyped axonal pruning of the infrapyramidal bundle (IPB) of the hippocampal mossy fiber system and that impaired pruning may be associated with alterations in the synaptic transmission of CA3 neurons. To test this hypothesis, we injected postnatal day 7 (PND7) mouse pups with ketamine or vehicle over 6 h and then studied them at different developmental stages corresponding to IPB pruning (PND20-40). Immunohistochemistry with synaptoporin (a marker of mossy fibers) revealed that in juvenile mice treated with ketamine at PND7, but not in vehicle-treated controls, positive IPB fibers extended farther into the stratum pyramidale of CA3 region. Furthermore, immunofluorescent double labeling for synaptoporin and PSD-95 strongly suggested that the unpruned IPB caused by neonatal ketamine exposure makes functional synapses. Importantly, patch-clamp electrophysiology for miniature excitatory postsynaptic currents (mEPSCs) in acute brain slices ex vivo revealed increased frequency and amplitudes of mEPSCs in hippocampal CA3 neurons in ketamine-treated groups when compared to vehicle controls. We conclude that neonatal ketamine exposure interferes with normal neural circuit development and that this interference leads to lasting increase in excitatory synaptic transmission in hippocampus.
Assuntos
Anestésicos , Ketamina , Camundongos , Animais , Ketamina/toxicidade , Transmissão Sináptica/fisiologia , Hipocampo , Sinapses/fisiologia , Fibras Musgosas Hipocampais , Anestésicos/farmacologiaRESUMO
PURPOSE OF REVIEW: Steadily mounting evidence of anesthesia-induced developmental neurotoxicity has been a challenge in pediatric anesthesiology. Considering that presently used anesthetics have, in different animal models, been shown to cause lasting behavioral impairments when administered at the peak of brain development, the nagging question, 'Is it time for the development of a new anesthetic' must be pondered. RECENT FINDINGS: The emerging 'soft analogs' of intravenous anesthetics aim to overcome the shortcomings of currently available clinical drugs. Remimazolam, a novel ester-analog of midazolam, is a well tolerated intravenous drug with beneficial pharmacological properties. Two novel etomidate analogs currently in development are causing less adrenocortical suppression while maintaining equally favorable hemodynamic stability and rapid metabolism. Quaternary lidocaine derivatives are explored as more potent and longer lasting alternatives to currently available local anesthetics. Xenon, a noble gas with anesthetic properties, is being considered as an anesthetic-sparing adjuvant in pediatric population. Finally, alphaxalone is being reevaluated in a new drug formulation because of its favorable pharmacological properties. SUMMARY: Although a number of exciting anesthetic drugs are under development, there is currently no clear evidence to suggest their lack of neurotoxic properties in young brain. Well designed preclinical studies are needed to evaluate their neurotoxic potential.
Assuntos
Anestesia , Anestésicos , Síndromes Neurotóxicas , Anestesia/efeitos adversos , Anestésicos/efeitos adversos , Anestésicos Intravenosos , Animais , Criança , Humanos , Lidocaína/efeitos adversos , Midazolam , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controleRESUMO
PURPOSE OF REVIEW: A family of neuronal voltage-gated calcium channels (VGCCs) have received only recently a significant consideration regarding the mechanisms of anesthesia because VGCC inhibition may be important in anesthetic action by decreasing neuronal excitability and presynaptic excitatory transmission. The T-type VGCCs channels (T-channels), although rarely involved in synaptic neurotransmitter release, play an important role in controlling neuronal excitability and in generating spontaneous oscillatory bursting of groups of neurons in the thalamus thought to be involved in regulating the state of arousal and sleep. Furthermore, these channels are important regulators of neuronal excitability in pain pathway. This review will provide an overview of historic perspective and the recent literature on the role of VGCCs and T-channel inhibition in particular in the mechanisms of action of anesthetics and analgesics. RECENT FINDINGS: Recent research in the field of novel mechanisms of hypnotic action of anesthetics revealed significant contribution of the Ca V 3.1 isoform of T-channels expressed in the thalamus. Furthermore, perioperative analgesia can be achieved by targeting Ca V 3.2 isoform of these channels that is abundantly expressed in pain pathways. SUMMARY: The review summarizes current knowledge regarding the contribution of T-channels in hypnosis and analgesia. Further preclinical and clinical studies are needed to validate their potential for developing novel anesthetics and new perioperative pain therapies.
Assuntos
Analgesia , Anestesia , Canais de Cálcio/metabolismo , Canais de Cálcio/uso terapêutico , Humanos , Dor/tratamento farmacológico , Dor/etiologia , Dor/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/uso terapêuticoRESUMO
We recently reported that a neurosteroid analogue with T-channel-blocking properties (3ß,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3ß-OH), induced hypnosis in rat pups without triggering neuronal apoptosis. Furthermore, we found that the inhibition of the CaV3.1 isoform of T-channels contributes to the hypnotic properties of 3ß-OH in adult mice. However, the specific mechanisms underlying the role of other subtypes of voltage-gated calcium channels in thalamocortical excitability and oscillations in vivo during 3ß-OH-induced hypnosis are largely unknown. Here, we used patch-clamp recordings from acute brain slices, in vivo electroencephalogram (EEG) recordings, and mouse genetics with wild-type (WT) and CaV2.3 knock-out (KO) mice to further investigate the molecular mechanisms of neurosteroid-induced hypnosis. Our voltage-clamp recordings showed that 3ß-OH inhibited recombinant CaV2.3 currents. In subsequent current-clamp recordings in thalamic slices ex vivo, we found that selective CaV2.3 channel blocker (SNX-482) inhibited stimulated tonic firing and increased the threshold for rebound burst firing in WT animals. Additionally, in thalamic slices we found that 3ß-OH inhibited spike-firing more profoundly in WT than in mutant mice. Furthermore, 3ß-OH reduced bursting frequencies in WT but not mutant animals. In ensuing in vivo experiments, we found that intra-peritoneal injections of 3ß-OH were less effective in inducing LORR in the mutant mice than in the WT mice, with expected sex differences. Furthermore, the reduction in total α, ß, and low γ EEG power was more profound in WT than in CaV2.3 KO females over time, while at 60 min after injections of 3ß-OH, the increase in relative ß power was higher in mutant females. In addition, 3ß-OH depressed EEG power more strongly in the male WT than in the mutant mice and significantly increased the relative δ power oscillations in WT male mice in comparison to the mutant male animals. Our results demonstrate for the first time the importance of the CaV2.3 subtype of voltage-gated calcium channels in thalamocortical excitability and the oscillations that underlie neurosteroid-induced hypnosis.
RESUMO
BACKGROUND: General anaesthesia in the neonatal period has detrimental effects on the developing mammalian brain. The impact of underlying inflammation on anaesthesia-induced developmental neurotoxicity remains largely unknown. METHODS: Postnatal day 7 (PND7) rats were randomly assigned to receive sevoflurane (3 vol% for 3 h) or carrier gas 12 h after bacterial lipopolysaccharide (LPS; 1 µg g-1) or vehicle injection. Pharmacological inhibition of caspase-1 by Vx-765 (two doses of 50 µg g-1 body weight) was used to investigate mechanistic pathways of neuronal injury. Histomorphological injury and molecular changes were quantified 2 h after the end of anaesthesia. Long-term functional deficits were tested at 5-8 weeks of age using a battery of behavioural tests in the memory and anxiety domains. RESULTS: Sevoflurane or LPS treatment increased activated caspase-3 and caspase-9 expression in the hippocampal subiculum and CA1, which was greater when sevoflurane was administered in the setting of LPS-induced inflammation. Neuronal injury induced by LPS+sevoflurane treatment resulted in sex-specific behavioural outcomes when rats were tested at 5-8 weeks of age, including learning and memory deficits in males and heightened anxiety-related behaviour in females. Hippocampal caspase-1 and NLRP1 (NLR family pyrin domain containing 1), but not NLRP3, were upregulated by LPS or LPS+sevoflurane treatment, along with related proinflammatory cytokines, interleukin (IL)-1ß, and IL-18. Pretreatment with Vx-765, a selective caspase-1 inhibitor, led to reduced IL-1ß in LPS and LPS+sevoflurane groups. Caspase-1 inhibition by Vx-765 significantly decreased activated caspase-3 and caspase-9 immunoreactivity in the subiculum. CONCLUSIONS: Systemic inflammation promotes developmental neurotoxicity by worsening anaesthesia-induced neuronal damage with sex-specific behavioural outcomes. This highlights the importance of studying anaesthesia-induced neurotoxicity in more clinically relevant settings.
Assuntos
Lipopolissacarídeos , Síndromes Neurotóxicas , Animais , Animais Recém-Nascidos , Caspase 1 , Caspase 3/metabolismo , Caspase 9/metabolismo , Citocinas/metabolismo , Inflamação/induzido quimicamente , Interleucina-18/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Mamíferos/metabolismo , Síndromes Neurotóxicas/etiologia , Ratos , Sevoflurano/toxicidadeRESUMO
Apoptosis, classically initiated by caspase pathway activation, plays a prominent role during normal brain development as well as in neurodegeneration. The noncanonical, nonlethal arm of the caspase pathway is evolutionarily conserved and has also been implicated in both processes, yet is relatively understudied. Dysregulated pathway activation during critical periods of neurodevelopment due to environmental neurotoxins or exposure to compounds such as anesthetics can have detrimental consequences for brain maturation and long-term effects on behavior. In this review, we discuss key molecular characteristics and roles of the noncanonical caspase pathway and how its dysregulation may adversely affect brain development. We highlight both genetic and environmental factors that regulate apoptotic and sublethal caspase responses and discuss potential interventions that target the noncanonical caspase pathway for developmental brain injuries.
Assuntos
Anestesia , Caspases , Apoptose/genética , Encéfalo/metabolismo , Caspase 3/metabolismo , Caspases/genética , Caspases/metabolismo , Humanos , NeurogêneseRESUMO
Treating pain in patients suffering from small fiber neuropathies still represents a therapeutic challenge for health care providers and drug developers worldwide. Unfortunately, none of the currently available treatments can completely reverse symptoms of either gain or loss of peripheral nerve sensation. Therefore, there is a clear need for novel mechanism-based therapies for peripheral diabetic neuropathy (PDN) that would improve treatment of this serious condition. In this review, we summarize the current knowledge on the mechanisms and causes of peripheral sensory neurons damage in diabetes. In particular, we focused on the subsets of voltage-gated sodium channels, TRP family of ion channels and a CaV3.2 isoform of T-type voltage-gated calcium channels. However, even though their potential is well-validated in multiple rodent models of painful PDN, clinical trials with specific pharmacological blockers of these channels have failed to exhibit therapeutic efficacy. We argue that understanding the development of diabetes and causal relationship between hyperglycemia, glycosylation, and other post-translational modifications may lead to the development of novel therapeutics that would efficiently alleviate painful PDN by targeting disease-specific mechanisms rather than individual nociceptive ion channels.
RESUMO
Over half of hospital revenue results from perioperative patient care, thus emphasizing the importance of efficient resource utilization within a hospital's suite of operating rooms (ORs). Predicting surgical case duration, including Anesthesia-controlled time (ACT) and Surgical-controlled time (SCT) has been significantly detailed throughout the literature as a means to help manage and predict OR scheduling. However, this information has previously been divided by surgical specialty, and only limited benchmarking data regarding ACT and SCT exists. We hypothesized that advancing the granularity of the ACT and SCT from surgical specialty to specific Current Procedural Terminology (CPT®) codes will produce data that is more accurate, less variable, and therefore more useful for OR schedule modeling and management. This single center study was conducted using times from surgeries performed at the University of Colorado Hospital (UCH) between September 2018 - September 2019. Individual cases were categorized by surgical specialty based on the specialty of the primary attending surgeon and CPT codes were compiled from billing data. Times were calculated as defined by the American Association of Clinical Directors. I2 values were calculated to assess heterogeneity of mean ACT and SCT times while Levene's test was utilized to assess heterogeneity of ACT and SCT variances. Statistical analyses for both ACT and SCT were calculated using JMP Statistical Discovery Software from SAS (Cary, NC) and R v3.6.3 (Vienna, Austria). All surgical cases (n = 87,537) performed at UCH from September 2018 to September 2019 were evaluated and 30,091 cases were included in the final analysis. All surgical subspecialties, with the exception of Podiatry, showed significant variability in ACT and SCT values between CPT codes within each surgical specialty. Furthermore, the variances of ACT and SCT values were also highly variable between CPT codes within each surgical specialty. Finally, benchmarking values of mean ACT and SCT with corresponding standard deviations are provided. Because each mean ACT and SCT value varies significantly between different CPT codes within a surgical specialty, using this granularity of data will likely enable improved accuracy in surgical schedule modeling compared to using mean ACT and SCT values for each surgical specialty as a whole. Furthermore, because there was significant variability of ACT and SCT variances between CPT codes, incorporating variance into surgical schedule modeling may also improve accuracy. Future investigations should include real-time simulations, logistical modeling, and labor utilization analyses as well as validation of benchmarking times in private practice settings.
Assuntos
Anestesia , Current Procedural Terminology , Anestesia/métodos , Benchmarking , Humanos , Salas Cirúrgicas , Duração da Cirurgia , Estados UnidosRESUMO
Despite substantial advocacy for the scientific community to focus on sex-specific differences in biology, the role of sex hormones remains inadequately studied in the field of anaesthesia-induced developmental neurotoxicity. A recent study by Yang and colleagues published in this journal addresses the importance of studying sex hormones during critical stages of brain development. The authors demonstrate that exogenous testosterone administered to immature mice pups around the time of sevoflurane exposure increased brain levels of testosterone, attenuated tau phosphorylation, inhibited glycogen synthase kinase-3ß activation and its interaction/binding with tau, reversed sevoflurane-induced decreases in neuronal activation, and attenuated cognitive impairments. Their well-designed experiments suggest an important role that testosterone plays in balancing several important pathways crucial for neuronal protection and normal function of neuronal circuits in the male mammalian brain.
Assuntos
Testosterona , Proteínas tau , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Fosforilação , Sevoflurano/farmacologia , Testosterona/metabolismo , Testosterona/farmacologiaRESUMO
Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.
Assuntos
Anestésicos Gerais/efeitos adversos , Rede Nervosa/efeitos dos fármacos , Transtornos Neurocognitivos/induzido quimicamente , Animais , Criança , Modelos Animais de Doenças , Humanos , Transtornos Neurocognitivos/psicologiaRESUMO
Since its invention, general anesthesia has been an indispensable component of modern surgery. While traditionally considered safe and beneficial in many pathological settings, hundreds of preclinical studies in various animal species have raised concerns about the detrimental and long-lasting consequences that general anesthetics may cause to the developing brain. Clinical evidence of anesthetic neurotoxicity in humans continues to mount as we continue to contemplate how to move forward. Notwithstanding the alarming evidence, millions of children are being anesthetized each year, setting the stage for substantial healthcare burdens in the future. Hence, furthering our knowledge of the molecular underpinnings of anesthesia-induced developmental neurotoxicity is crucially important and should enable us to develop protective strategies so that currently available general anesthetics could be safely used during critical stages of brain development. In this mini-review, we provide a summary of select strategies with primary focus on the mechanisms of neuroprotection and potential for clinical applicability. First, we summarize a diverse group of chemicals with the emphasis on intracellular targets and signal-transduction pathways. We then discuss epigenetic and transgenerational effects of general anesthetics and potential remedies, and also anesthesia-sparing or anesthesia-delaying approaches. Finally, we present evidence of a novel class of anesthetics with a distinct mechanism of action and a promising safety profile.