Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7225, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538646

RESUMO

Degenerative musculoskeletal disease known as Osteoarthritis (OA) causes serious pain and abnormalities for humans and on detecting at an early stage, timely treatment shall be initiated to the patients at the earliest to overcome this pain. In this research study, X-ray images are captured from the humans and the proposed Gaussian Aquila Optimizer based Dual Convolutional Neural Networks is employed for detecting and classifying the osteoarthritis patients. The new Gaussian Aquila Optimizer (GAO) is devised to include Gaussian mutation at the exploitation stage of Aquila optimizer, which results in attaining the best global optimal value. Novel Dual Convolutional Neural Network (DCNN) is devised to balance the convolutional layers in each convolutional model and the weight and bias parameters of the new DCNN model are optimized using the developed GAO. The novelty of the proposed work lies in evolving a new optimizer, Gaussian Aquila Optimizer for parameter optimization of the devised DCNN model and the new DCNN model is structured to minimize the computational burden incurred in spite of it possessing dual layers but with minimal number of layers. The knee dataset comprises of total 2283 knee images, out of which 1267 are normal knee images and 1016 are the osteoarthritis images with an image of 512 × 512-pixel width and height respectively. The proposed novel GAO-DCNN system attains the classification results of 98.25% of sensitivity, 98.93% of specificity and 98.77% of classification accuracy for abnormal knee case-knee joint images. Experimental simulation results carried out confirms the superiority of the developed hybrid GAO-DCNN over the existing deep learning neural models form previous literature studies.


Assuntos
Articulação do Joelho , Osteoartrite , Humanos , Articulação do Joelho/diagnóstico por imagem , Redes Neurais de Computação , Osteoartrite/diagnóstico por imagem , Dor
2.
Proc Inst Mech Eng H ; 238(1): 3-21, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044619

RESUMO

Diabetic retinopathy (DR) is a rapidly emerging retinal abnormality worldwide, which can cause significant vision loss by disrupting the vascular structure in the retina. Recently, optical coherence tomography angiography (OCTA) has emerged as an effective imaging tool for diagnosing and monitoring DR. OCTA produces high-quality 3-dimensional images and provides deeper visualization of retinal vessel capillaries and plexuses. The clinical relevance of OCTA in detecting, classifying, and planning therapeutic procedures for DR patients has been highlighted in various studies. Quantitative indicators obtained from OCTA, such as blood vessel segmentation of the retina, foveal avascular zone (FAZ) extraction, retinal blood vessel density, blood velocity, flow rate, capillary vessel pressure, and retinal oxygen extraction, have been identified as crucial hemodynamic features for screening DR using computer-aided systems in artificial intelligence (AI). AI has the potential to assist physicians and ophthalmologists in developing new treatment options. In this review, we explore how OCTA has impacted the future of DR screening and early diagnosis. It also focuses on how analysis methods have evolved over time in clinical trials. The future of OCTA imaging and its continued use in AI-assisted analysis is promising and will undoubtedly enhance the clinical management of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico por imagem , Angiofluoresceinografia/métodos , Tomografia de Coerência Óptica/métodos , Inteligência Artificial , Vasos Retinianos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37909209

RESUMO

Diabetes Mellitus (DM) is the most hazardous public health challenge requiring engineering study to prevent disease complications. In this paper, a Sorensen-based diabetic model is presented in which the insulin-glucose process of a Type 1 patient is maintained by considering other factors such as physical characteristics and changes in mental aspects of the diabetic patient. The purpose of the research is to include a non-linear model of a patient with diabetes who is affected by stress, meals, exercise, and Insulin Sensitivity (IS), and a suitable RECCo controller is designed as a notable recent innovation that implements the concept of ANYA fuzzy rule-based system, which is an online adaptive type of controller that is used in this research work with an uncertainty case of the condition, where the blood glucose must be regulated. To ensure the performance of the proposed controller, a simple insulin pump is designed in a practical case, and a hardware experiment is conducted. The result of the hardware is analyzed and shows the success of the implementation of the controller in blood glucose regulation, thereby preventing complications such as hypoglycemia and hyperglycemia. The comparison analysis of RECCo was performed with other types of controllers, such as MPC and MRAC. The accuracy of the model was validated using the N-BEATS algorithm with a data-set collected from the simulated model, which is around 98%.

5.
Sci Rep ; 12(1): 186, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996986

RESUMO

Diabetes is a serious metabolic disorder with high rate of prevalence worldwide; the disease has the characteristics of improper secretion of insulin in pancreas that results in high glucose level in blood. The disease is also associated with other complications such as cardiovascular disease, retinopathy, neuropathy and nephropathy. The development of computer aided decision support system is inevitable field of research for disease diagnosis that will assist clinicians for the early prognosis of diabetes and to facilitate necessary treatment at the earliest. In this research study, a Traditional Chinese Medicine based diabetes diagnosis is presented based on analyzing the extracted features of panoramic tongue images such as color, texture, shape, tooth markings and fur. The feature extraction is done by Convolutional Neural Network (CNN)-ResNet 50 architecture, and the classification is performed by the proposed Deep Radial Basis Function Neural Network (RBFNN) algorithm based on auto encoder learning mechanism. The proposed model is simulated in MATLAB environment and evaluated with performance metrics-accuracy, precision, sensitivity, specificity, F1 score, error rate, and receiver operating characteristics (ROC). On comparing with existing models, the proposed CNN based Deep RBFNN machine learning classifier model outperformed with better classification performance and proving its effectiveness.


Assuntos
Aprendizado Profundo , Diabetes Mellitus Tipo 2/patologia , Diagnóstico por Computador , Interpretação de Imagem Assistida por Computador , Medicina Tradicional Chinesa , Fotografação , Língua/patologia , Técnicas de Apoio para a Decisão , Humanos , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA