Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39471396

RESUMO

The development of high-performance adsorbents for environmental remediation is a current need, and ionic porous organic polymers (iPOPs), due to their high physicochemical stability, high surface area, added electrostatic interaction, and easy reusability, have already established themselves as a better adsorbent. However, research on the structural design of high-performance iPOP-based adsorbents is still nascent. This study explored the building blocks' role in optimizing the polymers' charge density and surface area to develop better polymeric adsorbents. Among the three synthesized polymers, iPOP-ZN1, owing to its high surface area and high charge density in its active sites, proved to be the best adsorbent for adsorbing inorganic and organic pollutants in an aqueous medium. The polymers were efficient enough to capture and store iodine vapor in the solid state. Further, this study tried to address using iodine-loaded polymers in antibacterial action. Iodine-loaded iPOPs show impressive antibacterial behavior against E. coli, B. subtilis, and H. pylori.

2.
J Infect Public Health ; 17(8): 102486, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002466

RESUMO

High mortality has been reported in severe cases of COVID-19. Emerging reports suggested that the severity is not only due to SARS-CoV-2 infection, but also due to coinfections by other pathogens exhibiting symptoms like COVID-19. During the COVID-19 pandemic, simultaneous respiratory coinfections with various viral (Retroviridae, Flaviviridae, Orthomyxoviridae, and Picoviridae) and bacterial (Mycobacteriaceae, Mycoplasmataceae, Enterobacteriaceae and Helicobacteraceae) families have been observed. These pathogens intensify disease severity by potentially augmenting SARSCoV-2 replication, inflammation, and modulation of signaling pathways. Coinfection emerges as a critical determinant of COVID-19 severity, principally instigated by heightened pro-inflammatory cytokine levels, as cytokine storm. Thereby, in co-infection scenario, the severity is also driven by the modulation of inflammatory signaling pathways by both pathogens possibly associated with interleukin, interferon, and cell death exacerbating the severity. In the current review, we attempt to understand the role of co- infections by other pathogens and their involvement in the severity of COVID-19.


Assuntos
COVID-19 , Coinfecção , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , Coinfecção/microbiologia , Coinfecção/virologia , COVID-19/complicações , Infecções Bacterianas/complicações , Síndrome da Liberação de Citocina , Citocinas/metabolismo
3.
Nanoscale ; 16(28): 13613-13626, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38958597

RESUMO

Over the past several years, a significant increase in the expanding field of biomaterial sciences has been observed due to the development of biocompatible materials based on peptide derivatives that have intrinsic therapeutic potential. In this report, we synthesized nucleobase functionalized peptide derivatives (NPs). Hydrogelation in the synthesized NPs was induced by increasing their hydrophobicity with an aromatic moiety. The aggregation behavior of the NPs was analyzed by performing molecular dynamics simulations and DOSY NMR experiments. We performed circular dichroism (CD), thioflavin-T binding and PXRD to characterize the supramolecular aggregation in the NP1 hydrogel. The mechanical strength of the NP1 hydrogel was tested by performing rheological experiments. TEM and SEM experiments were performed to investigate the morphology of the NP1 hydrogel. The biocompatibility of the newly synthesized NP1 hydrogel was investigated using McCoy and A549 cell lines. The hemolytic activity of the NP1 hydrogel was examined in human blood cells. The stability of the newly formed NP1 hydrogel was examined using proteinase K and α-chymotrypsin. The NP1 hydrogel was used for in vitro wound healing. Western blotting, qRT-PCR and DCFDA assay were performed to determine the anti-inflammatory activity of the NP1 hydrogel. The synthesized NP1 hydrogel also exhibits antibacterial efficacy.


Assuntos
Anti-Inflamatórios , Hidrogéis , Peptídeos , Cicatrização , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Células A549 , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Hemólise/efeitos dos fármacos , Animais , Simulação de Dinâmica Molecular , Camundongos , Linhagem Celular
4.
Chem Biol Drug Des ; 103(6): e14564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845574

RESUMO

The leaves of Araucaria cunninghamii are known to be nonedible and toxic. Previous studies have identified biflavones in various Araucaria species. This study aimed to investigate the in vitro cytotoxicity of the isolated compounds from Araucaria cunninghamii after metabolomics and network pharmacological analysis. Methanol extract of Araucaria cunninghamii leaves was subjected to bioassay-guided fractionation. The active fraction was analyzed using LC-HRMS, through strategic database mining, by comparing the data to the Dictionary of Natural Products to identify 12 biflavones, along with abietic acid, beta-sitosterol, and phthalate. Eight compounds were screened for network pharmacology study, where in silico ADME analysis, prediction of gene targets, compound-gene-pathway network and hierarchical network analysis, protein-protein interaction, KEGG pathway, and Gene Ontology analyses were done, that showed PI3KR1, EGFR, GSK3B, and ABCB1 as the common targets for all the compounds that may act in the gastric cancer pathway. Simultaneously, four biflavones were isolated via chromatography and identified through NMR as dimeric apigenin with varying methoxy substitutions. Cytotoxicity study against the AGS cell line for gastric cancer showed that AC1 biflavone (IC50 90.58 µM) exhibits the highest cytotoxicity and monomeric apigenin (IC50 174.5 µM) the lowest. Besides, the biflavones were docked to the previously identified targets to analyze their binding affinities, and all the ligands were found to bind with energy ≤-7 Kcal/mol.


Assuntos
Mineração de Dados , Metabolômica , Simulação de Acoplamento Molecular , Humanos , Linhagem Celular Tumoral , Folhas de Planta/química , Folhas de Planta/metabolismo , Farmacologia em Rede , Biflavonoides/química , Biflavonoides/farmacologia , Biflavonoides/metabolismo , Biflavonoides/isolamento & purificação , Traqueófitas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Cromatografia Líquida , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Espectrometria de Massas
5.
Adv Protein Chem Struct Biol ; 140: 199-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38762270

RESUMO

The human gut microbiota is a complex and dynamic community of microorganisms, that influence metabolic, neurodevelopmental, and immune pathways. Microbial dysbiosis, characterized by changes in microbial diversity and relative abundances, is implicated in the development of various chronic neurological and neurodegenerative disorders. These disorders are marked by the accumulation of pathological protein aggregates, leading to the progressive loss of neurons and behavioural functions. Dysregulations in protein-protein interaction networks and signalling complexes, critical for normal brain function, are common in neurological disorders but challenging to unravel, particularly at the neuron and synapse-specific levels. To advance therapeutic strategies, a deeper understanding of neuropathogenesis, especially during the progressive disease phase, is needed. Biomarkers play a crucial role in identifying disease pathophysiology and monitoring disease progression. Proteomics, a powerful technology, shows promise in accelerating biomarker discovery and aiding in the development of novel treatments. In this chapter, we provide an in-depth overview of how proteomic techniques, utilizing various biofluid samples from patients with neurological conditions and diverse animal models, have contributed valuable insights into the pathogenesis of numerous neurological disorders. We also discuss the current state of research, potential challenges, and future directions in proteomic approaches to unravel neuro-pathological conditions.


Assuntos
Disbiose , Microbioma Gastrointestinal , Proteômica , Humanos , Disbiose/metabolismo , Disbiose/microbiologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/microbiologia , Animais , Eixo Encéfalo-Intestino , Biomarcadores/metabolismo
6.
ACS Chem Neurosci ; 15(6): 1254-1264, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38436259

RESUMO

The reactivation of ubiquitously present Epstein-Barr virus (EBV) is known to be involved with numerous diseases, including neurological ailments. A recent in vitro study from our group unveiled the association of EBV and its 12-amino acid peptide glycoprotein M146-157 (gM146-157) with neurodegenerative diseases, viz., Alzheimer's disease (AD) and multiple sclerosis. In this study, we have further validated this association at the in vivo level. The exposure of EBV/gM146-157 to mice causes a decline in the cognitive ability with a concomitant increase in anxiety-like symptoms through behavioral assays. Disorganization of hippocampal neurons, cell shrinkage, pyknosis, and apoptotic appendages were observed in the brains of infected mice. Inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were found to be elevated in infected mouse brain tissue samples, whereas TNF-α exhibited a decline in the serum of these mice. Further, the altered levels of nuclear factor-kappa B (NF-kB) and neurotensin receptor 2 affirmed neuroinflammation in infected mouse brain samples. Similarly, the risk factor of AD, apolipoprotein E4 (ApoE4), was also found to be elevated at the protein level in EBV/gM146-157 challenged mice. Furthermore, we also observed an increased level of myelin basic protein in the brain cortex. Altogether, our results suggested an integral connection of EBV and its gM146-157 peptide to the neuropathologies.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Animais , Camundongos , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Fator de Necrose Tumoral alfa/metabolismo , Citocinas , Glicoproteínas
7.
J Mater Sci Mater Med ; 35(1): 24, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526738

RESUMO

Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1ß, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.


Assuntos
Curcumina , Nanotubos de Carbono , Humanos , Curcumina/farmacologia , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Antioxidantes/farmacologia , Inflamação , Anti-Inflamatórios/farmacologia
8.
Environ Pollut ; 347: 123676, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442821

RESUMO

Organochlorine (OC) and organophosphorus (OP) pesticides such as chlorpyrifos (CPF) and endosulfan (ES) have been associated with a plethora of adverse health effects. Helicobacter pylori (H. pylori) infection can lead to gastrointestinal diseases by regulating several cellular processes. Thus, the current study focuses on the effect of the co-exposure to pesticides and H. pylori on gastric epithelial cells. We have used the in-silico approach to determine the interactive potential of pesticides and their metabolites with H. pylori-associated proteins. Further, various in-vitro methods depict the potential of ES in enhancing the virulence of H. pylori. Our results showed that ES along with H. pylori affects the mitochondrial dynamics, increases the transcript expression of mitochondrial fission genes, and lowers the mitochondrial membrane potential and biomass. They also promote inflammation and lower oxidative stress as predicted by ROS levels. Furthermore, co-exposure induces the multi-nucleated cells in gastric epithelial cells. In addition, ES along with H. pylori infection follows the extrinsic pathway for apoptotic signaling. H. pylori leads to the NF-κB activation which in turn advances the ß-catenin expression. The expression was further enhanced in the co-exposure condition and even more prominent in co-exposure with ES-conditioned media. Thus, our study demonstrated that pesticide and their metabolites enhance the pathogenicity of H. pylori infection.


Assuntos
Clorpirifos , Helicobacter pylori , Praguicidas , Helicobacter pylori/genética , Mucosa Gástrica/metabolismo , Clorpirifos/toxicidade , Clorpirifos/metabolismo , Virulência , Endossulfano/toxicidade , Células Epiteliais , Praguicidas/metabolismo
9.
Virulence ; 15(1): 2303853, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38197252

RESUMO

Helicobacter pylori is a pathogenic bacterium that causes gastritis and gastric carcinoma. Besides gastric complications its potential link with gut-brain axis disruption and neurological disorders has also been reported. The current study investigated the plausible role and its associated molecular mechanism underlying H. pylori mediated gut-brain axis disruption and neuroinflammation leading to neurological modalities like Alzheimer's disease (AD). We have chosen the antimicrobial resistant and susceptible H. pylori strains on the basis of broth dilution method. We have observed the increased inflammatory response exerted by H. pylori strains in the gastric as well as in the neuronal compartment after treatment with Helicobacter pylori derived condition media (HPCM). Further, elevated expression of STAT1, STAT3, and AD-associated proteins- APP and APOE4 was monitored in HPCM-treated neuronal and neuron-astrocyte co-cultured cells. Excessive ROS generation has been found in these cells. The HPCM treatment to LN229 causes astrogliosis, evidenced by increased glial fibrillary acidic protein. Our results indicate the association of STAT3 as an important regulator in the H. pylori-mediated pathogenesis in neuronal cells. Notably, the inhibition of STAT3 by its specific inhibitor, BP-1-102, reduced the expression of pSTAT3 and AD markers in neuronal compartment induced by HPCM. Thus, our study demonstrates that H. pylori infection exacerbates inflammation in AGS cells and modulates the activity of STAT3 regulatory molecules. H. pylori secretome could affect neurological compartments by promoting STAT3 activation and inducing the expression of AD-associated signature markers. Further, pSTAT-3 inhibition mitigates the H. pylori associated neuroinflammation and amyloid pathology.


Assuntos
Doença de Alzheimer , Helicobacter pylori , Humanos , Doenças Neuroinflamatórias , Eixo Encéfalo-Intestino , Secretoma , Inflamação/microbiologia , Fator de Transcrição STAT3/metabolismo
10.
J Neurovirol ; 30(1): 22-38, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38189894

RESUMO

Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.


Assuntos
Barreira Hematoencefálica , Esclerose Múltipla , Barreira Hematoencefálica/virologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Humanos , Animais , Esclerose Múltipla/virologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Camundongos , Junções Íntimas/virologia , Junções Íntimas/metabolismo , Permeabilidade Capilar , Células Endoteliais/virologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia
11.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38281067

RESUMO

Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/fisiologia , Ativação Viral/fisiologia
12.
Folia Microbiol (Praha) ; 69(1): 41-57, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672163

RESUMO

The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-ß/SMAD, and ß-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.


Assuntos
Coinfecção , Infecções por Vírus Epstein-Barr , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Infecções por Vírus Epstein-Barr/microbiologia , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Helicobacter pylori/genética , Coinfecção/microbiologia , Polaridade Celular , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Proteínas Virais , Infecções por Helicobacter/microbiologia
13.
Mol Neurobiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057642

RESUMO

Accumulation of misfolded proteins compromises overall cellular health and fitness. The failure to remove misfolded proteins is a critical reason for their unwanted aggregation in dense cellular protein pools. The accumulation of various inclusions serves as a clinical feature for neurodegenerative diseases. Previous findings suggest that different cellular compartments can store these abnormal inclusions. Studies of transgenic mice and cellular models of neurodegenerative diseases indicate that depleted chaperone capacity contributes to the aggregation of damaged or aberrant proteins, which consequently disturb proteostasis and cell viability. However, improving these abnormal proteins' selective elimination is yet to be well understood. Still, molecular strategies that can promote the effective degradation of abnormal proteins without compromising cellular viability are unclear. Here, we reported that the trehalose treatment elevates endogenous proteasome levels and enhances the activities of the proteasome. Trehalose-mediated proteasomal activation elevates the removal of both bona fide misfolded and various neurodegenerative disease-associated proteins. Our current study suggests that trehalose may retain a proteasome activation potential, which seems helpful in the solubilization of different mutant misfolded proteins, improving cell viability. These results reveal a possible molecular approach to reduce the overload of intracellular misfolded proteins, and such cytoprotective functions may play a critical role against protein conformational diseases.

14.
J Biomol Struct Dyn ; : 1-13, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937550

RESUMO

Cancer is a condition in which a few of the body's cells grow beyond its control and spread to other outward regions. Globally, gastric cancer (GC) is third most common cause of cancer-related mortality and the fourth most common kind of cancer. Persistent infection of VacA-positive Helicobacter pylori (H. pylori) modulates cellular physiology and leads to GC. About ∼70% of H. pylori are positive for vacuolating cytotoxin-A (VacA), and it infects ∼80-90% of world populations. Herein, for first time, we repurposed FDA-approved gram-negative antibiotics, which are feasible alternatives to existing regimens and may be used in combinatorial treatment against VacA-positive H. pylori. Out of 110 FDA-approved antibiotics, we retrieved 92 structures, which were screened against the VacA protein. Moreover, we determined that the top eight hit antibiotics viz; cefpiramide, cefiderocol, eravacycline, doxycycline, ceftriaxone, enoxacin, tedizolid, and cefamandole show binding free energies of -9.1, -8.9, -8.1, -8.0, -7.9, -7.8, -7.8 and -7.8 Kcal/mol, respectively, with VacA protein. Finally, we performed 100 ns duplicate MD simulations on the top eight selected antibiotics showing strong VacA binding. Subsequently, five antibiotics, including cefiderocol, cefpiramide, doxycycline, enoxacin, and tedizolid show stable ligand protein distance and good binding affinity revealed by the MM-PBSA scheme. Among the five antibiotics cefiderocol act as the most potent inhibitor (-28.33 kcal/mol). Furthermore, we also identified the hotspot residue like Asn-506, Tyr-529, and Phe-483 which control the interaction. Concisely, we identified antibiotics that can be repurposed against VacA of H. pylori and explored their molecular mechanism of interaction with VacA.Communicated by Ramaswamy H. Sarma.

15.
ACS Appl Bio Mater ; 6(11): 5018-5029, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37914190

RESUMO

Self-assembled metal-ion cross-linked multifunctional hydrogels are gaining a lot of attention in the fields of biomedical and biocatalysis. Herein, we report a heat-triggered metallogel that was spontaneously formed by the self-assembly of adenosine 5'-monophosphate (AMP) and cobalt chloride, accompanied by a color transition depicting an octahedral to tetrahedral transition at high temperature. The hydrogel shows excellent stability in a wide pH window from 1 to 12. The metallogel is being exploited as a multienzyme mimic, exhibiting pH-responsive catalase and peroxidase activity. Whereas catalase mimicking activity was demonstrated by the hydrogel under neutral and basic conditions, it shows peroxidase mimicking activity in an acidic medium. The multifunctionality of the synthesized metallogel was further demonstrated by phenoxazinone synthase-like activities. Owing to its catalase-mimicking activity, the metallogel could effectively reduce the oxidative stress produced in cells due to excess hydrogen peroxide by degrading H2O2 to O2 and H2O under physiological conditions. The biocompatible metallogel could prevent cell apoptosis by scavenging reactive oxygen species. A green and simple synthetic strategy utilizing commonly available biomolecules makes this metallogel highly attractive for catalytic and biomedical applications.


Assuntos
Hidrogéis , Peróxido de Hidrogênio , Catalase , Cobalto , Concentração de Íons de Hidrogênio
16.
Front Immunol ; 14: 1192032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876925

RESUMO

Background: EBV infection has long been postulated to trigger multiple sclerosis (MS) and anti-EBV antibodies showed a consistent presence in MS patients. Previous reports from our group have shown that the EBV infects different brain cells. Entry of the virus in neuronal cells is assisted by several host factors including membrane cholesterol. By using an inhibitor, methyl-ß-cyclodextrin (MßCD), we evaluated the role of membrane cholesterol in EBV infection and pathogenesis. Methodology: The membrane cholesterol depleted cells were infected with EBV and its latent genes expression were assessed. Further, EBV-mediated downstream signalling molecules namely STAT3, RIP, NF-kB and TNF-α levels was checked at protein level along with spatial (periphery and nucleus) and temporal changes in biomolecular fingerprints with Raman microspectroscopy (RS). Results: Upon treatment with MßCD, lmp1 and lmp2a suggested significant downregulation compared to EBV infection. Downstream molecules like STAT3 and RIP, exhibited a decrease in protein levels temporally upon exposure to MßCD while NF-kB levels were found to be increased. Further, the intensity of the Raman spectra exhibited an increase in triglycerides and fatty acids in the cytoplasm of EBV-infected LN-229 cells compared to MßCD+EBV. Likewise, the Raman peak width of cholesterol, lipid and fatty acids were found to be reduced in EBV-infected samples indicates elevation in the cholesterol specific moieties. In contrast, an opposite pattern was observed in the nucleus. Moreover, the ingenuity pathway analysis revealed protein molecules such as VLDLR, MBP and APP that are associated with altered profile of cholesterol, fatty acids and triglycerides with infection-related CNS disorders. Conclusion: Taken together, our results underline the important role of membrane cholesterol over EBV entry/pathogenesis in astroglia cells which further trigger/exacerbate virus-associated neuropathologies. These results likely to aid into the prognosis of neurological disease like MS.


Assuntos
Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4 , Astrócitos/patologia , NF-kappa B , Colesterol , Triglicerídeos , Ácidos Graxos
17.
Virology ; 588: 109901, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37839162

RESUMO

Aurora kinase A (AURKA) is one of the crucial cell cycle regulators associated with gastric cancer. Here, we explored Epstein Barr Virus-induced gastric cancer progression through EBV protein EBNA1 with AURKA. We found that EBV infection enhanced cell proliferation and migration of AGS cells and upregulation of AURKA levels. AURKA knockdown markedly reduced the proliferation and migration of the AGS cells even with EBV infection. Moreover, MD-simulation data deciphered the probable connection between EBNA1 and AURKA. The in-vitro analysis through the transcript and protein expression showed that AURKA knockdown reduces the expression of EBNA1. Moreover, EBNA1 alone can enhance AURKA protein expression in AGS cells. Co-immunoprecipitation and NMR analysis between AURKA and EBNA1 depicts the interaction between two proteins. In addition, AURKA knockdown promotes apoptosis in EBV-infected AGS cells through cleavage of Caspase-3, -9, and PARP1. This study demonstrates that EBV oncogenic modulators EBNA1 possibly modulate AURKA in EBV-mediated gastric cancer progression.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/metabolismo , Neoplasias Gástricas/metabolismo , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo
18.
J Biomol Struct Dyn ; : 1-17, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655681

RESUMO

Helicobacter pylori and Epstein Barr virus (EBV) are group1 carcinogens and their role in Gastric cancer (GC) is well established. Previously we have shown that H. pylori and EBV appears to support aggressive gastric oncogenesis through the upregulation of oncoprotein Gankyrin. Natural plant active molecules have the potential to interrupt oncogenesis. Herein, we investigated the potential of Withania somnifera root extract (WSE) as a possible chemotherapeutic agent against host oncoprotein Gankyrin whose expression was altered by H. pylori and EBV-associated modified cellular milieu. The results show that WSE does not have any inhibitory effect on H. pylori and EBV-associated gene transcripts except for the lmps (lmp1, lmp2a, and lmp2B). Moreover, the WSE exert their anticancer activity via host cellular response and decreased the expression of cell-migratory (mmp3 and mmp7); cell-cycle regulator (pcna); antiapoptotic gene (bcl2); increased the expression of the proapoptotic gene (apaf1 and bax); and tumor suppressor (p53, prb, and pten). Knockdown of Gankyrin followed by the treatment of WSE also decreases the expression of TNF-ɑ, Akt, and elevated the expression of NFkB, PARP, Casp3, and Casp9. WSE also reduces cell migration, and genomic instability and forced the cells to commit programmed cell death. Moreover, molecular simulation studies revealed that out of eight active compounds of WSE, only four compounds such as withaferin A (WFA), withanoside IV (WA4), withanolide B (WNB), and withanolide D (WND) showed direct stable interaction with Gankyrin. This article reports for the first time that treatment of WSE decreased the cancerous properties through host cellular response modulation in gastric epithelial cells coinfected with H. pylori and EBV.Communicated by Ramaswamy H. Sarma.

19.
Apoptosis ; 28(11-12): 1596-1617, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37658919

RESUMO

SARS-CoV-2 Envelope protein (E) is one of the crucial components in virus assembly and pathogenesis. The current study investigated its role in the SARS-CoV-2-mediated cell death and inflammation in lung and gastrointestinal epithelium and its effect on the gastrointestinal-lung axis. We observed that transfection of E protein increases the lysosomal pH and induces inflammation in the cell. The study utilizing Ethidium bromide/Acridine orange and Hoechst/Propidium iodide staining demonstrated necrotic cell death in E protein transfected cells. Our study revealed the role of the necroptotic marker RIPK1 in cell death. Additionally, inhibition of RIPK1 by its specific inhibitor Nec-1s exhibits recovery from cell death and inflammation manifested by reduced phosphorylation of NFκB. The E-transfected cells' conditioned media induced inflammation with differential expression of inflammatory markers compared to direct transfection in the gastrointestinal-lung axis. In conclusion, SARS-CoV-2 E mediates inflammation and necroptosis through RIPK1, and the E-expressing cells' secretion can modulate the gastrointestinal-lung axis. Based on the data of the present study, we believe that during severe COVID-19, necroptosis is an alternate mechanism of cell death besides ferroptosis, especially when the disease is not associated with drastic increase in serum ferritin.


Assuntos
Apoptose , COVID-19 , Humanos , SARS-CoV-2 , Necroptose/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Pulmão/metabolismo , Inflamação/patologia , Colo/metabolismo , Colo/patologia
20.
ACS Chem Neurosci ; 14(17): 2968-2980, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37590965

RESUMO

Epigallocatechin-3-gallate (EGCG), a polyphenolic moiety found in green tea extracts, exhibits pleiotropic bioactivities to combat many diseases including neurological ailments. These neurological diseases include Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. For instance, in the case of Alzheimer's disease, the formation of a ß-sheet in the region of the 10th-21st amino acids was significantly reduced in EGCG-induced oligomeric samples of Aß40. Its interference induces the formation of Aß structures with an increase in intercenter-of-mass distances, reduction in interchain/intrachain contacts, reduction in ß-sheet propensity, and increase in α-helix. Besides, numerous neurotropic viruses are known to instigate or aggravate neurological ailments. It exerts an effect on the oxidative damage caused in neurodegenerative disorders by acting on GSK3-ß, PI3K/Akt, and downstream signaling pathways via caspase-3 and cytochrome-c. EGCG also diminishes these viral-mediated effects, such as EGCG delayed HSV-1 infection by blocking the entry for virions, inhibitory effects on NS3/4A protease or NS5B polymerase of HCV and potent inhibitor of ZIKV NS2B-NS3pro/NS3 serine protease (NS3-SP). It showed a reduction in the neurotoxic properties of HIV-gp120 and Tat in the presence of IFN-γ. EGCG also involves numerous viral-mediated inflammatory cascades, such as JAK/STAT. Nonetheless, it also inhibits the Epstein-Barr virus replication protein (Zta and Rta). Moreover, it also impedes certain viruses (influenza A and B strains) by hijacking the endosomal and lysosomal compartments. Therefore, the current article aims to describe the importance of EGCG in numerous neurological diseases and its inhibitory effect against neurotropic viruses.


Assuntos
Doença de Alzheimer , Infecções por Vírus Epstein-Barr , Doenças do Sistema Nervoso , Infecção por Zika virus , Zika virus , Humanos , Quinase 3 da Glicogênio Sintase , Fosfatidilinositol 3-Quinases , Herpesvirus Humano 4
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA