Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 15(16): 5802-5813, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665509

RESUMO

Poly(vinyl chloride) (PVC) is one of the highest production volume polymers due to its many applications, and it is one of the least recycled due to its chemical structure and frequent formulation with additives. Developing efficient PVC recycling techniques would enable PVC waste to be reused or repurposed in other processes. Within this context, the literature on PVC modification offers considerable insight into versatile reaction pathways, potentially inspiring new approaches for repurposing PVC waste into value-added products. This perspective provides an overview of PVC functionalization through a lens of chemical recycling, discussing various PVC reactivity trends and their applications with a critical assessment and future outlook of their recycling implications.

2.
Angew Chem Int Ed Engl ; 63(21): e202315917, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38437456

RESUMO

The design of N-oxyl hydrogen atom transfer catalysts has proven challenging to date. Previous efforts have focused on the functionalization of the archetype, phthalimide-N-oxyl. Driven in part by the limited options for modification of this structure, this strategy has provided only modest improvements in reactivity and/or solubility. Our previous mechanistic efforts suggested that while the electron-withdrawing carbonyls of the phthalimide are necessary to maximize the O-H bond dissociation enthalpy of the HAT product hydroxylamine and overall reaction thermodynamics, they undergo nucleophilic substitution leading to catalyst decomposition. In an attempt to minimize this vulnerability, we report the characterization of N-oxyl catalysts wherein the aryl ring in PINO is replaced with the combination of a substituted heteroatom and quaternary carbon. By rendering one carbonyl carbon less electrophilic and the other less sterically accessible, the corresponding N1-aryl-hydantoin-N3-oxyl radical showed significantly higher stability than PINO as well as a modest improvement in reactivity. This proof-of-principle in new scaffold design may accelerate future HAT catalyst discovery and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA