Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Neurobiol ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372958

RESUMO

Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.

2.
Acta Neuropathol Commun ; 11(1): 121, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491291

RESUMO

Ferroptosis is a form of lipid peroxidation-mediated cell death and damage triggered by excess iron and insufficiency in the glutathione antioxidant pathway. Oxidative stress is thought to play a crucial role in progressive forms of multiple sclerosis (MS) in which iron deposition occurs. In this study we assessed if ferroptosis plays a role in a chronic form of experimental autoimmune encephalomyelitis (CH-EAE), a mouse model used to study MS. Changes were detected in the mRNA levels of several ferroptosis genes in CH-EAE but not in relapsing-remitting EAE. At the protein level, expression of iron importers is increased in the earlier stages of CH-EAE (onset and peak). While expression of hemoxygenase-1, which mobilizes iron from heme, likely from phagocytosed material, is increased in macrophages at the peak and progressive stages. Excess iron in cells is stored safely in ferritin, which increases with disease progression. Harmful, redox active iron is released from ferritin when shuttled to autophagosomes by 'nuclear receptor coactivator 4' (NCOA4). NCOA4 expression increases at the peak and progressive stages of CH-EAE and accompanied by increase in redox active ferrous iron. These changes occur in parallel with reduction in the antioxidant pathway (system xCT, glutathione peroxidase 4 and glutathione), and accompanied by increased lipid peroxidation. Mice treated with a ferroptosis inhibitor for 2 weeks starting at the peak of CH-EAE paralysis, show significant improvements in function and pathology. Autopsy samples of tissue sections of secondary progressive MS (SPMS) showed NCOA4 expression in macrophages and oligodendrocytes along the rim of mixed active/inactive lesions, where ferritin+ and iron containing cells are located. Cells expressing NCOA4 express less ferritin, suggesting ferritin degradation and release of redox active iron, as indicated by increased lipid peroxidation. These data suggest that ferroptosis is likely to contribute to pathogenesis in CH-EAE and SPMS.


Assuntos
Encefalomielite Autoimune Experimental , Ferroptose , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Antioxidantes , Ferro/metabolismo , Ferritinas/metabolismo , Glutationa/metabolismo
3.
Neuroscientist ; 29(5): 591-615, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35678019

RESUMO

Iron accumulation in the CNS occurs in many neurological disorders. It can contribute to neuropathology as iron is a redox-active metal that can generate free radicals. The reasons for the iron buildup in these conditions are varied and depend on which aspects of iron influx, efflux, or sequestration that help maintain iron homeostasis are dysregulated. Iron was shown recently to induce cell death and damage via lipid peroxidation under conditions in which there is deficient glutathione-dependent antioxidant defense. This form of cell death is called ferroptosis. Iron chelation has had limited success in the treatment of neurological disease. There is therefore much interest in ferroptosis as it potentially offers new drugs that could be more effective in reducing iron-mediated lipid peroxidation within the lipid-rich environment of the CNS. In this review, we focus on the molecular mechanisms that induce ferroptosis. We also address how iron enters and leaves the CNS, as well as the evidence for ferroptosis in several neurological disorders. Finally, we highlight biomarkers of ferroptosis and potential therapeutic strategies.


Assuntos
Ferroptose , Doenças do Sistema Nervoso , Humanos , Morte Celular , Ferro/metabolismo , Oxirredução
4.
5.
Neuromolecular Med ; 24(3): 268-273, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34837638

RESUMO

Neuroprotective, antineuroinflammatory, and proneurogenic effects of glucosamine, a naturally occurring amino sugar, have been reported in various animal models of brain injury including cerebral ischemia and hypoxic brain damage. Given that clinical translation of therapeutic candidates identified in animal models of ischemic stroke has remained unsatisfactory in general, possibly due to inadequacy of existing models, we sought to study the effects of glucosamine in a recently developed, clinical condition mimicking mouse model of internal cerebral artery occlusion. In this model of mild to moderate striatal damage, glucosamine ameliorated behavioral dysfunction, rescued ischemia-induced striatal damage, and suppressed ischemia-induced upregulation of proinflammatory genes in striatal tissue. Further, in ex vivo neurosphere assay involving neural stem cells/neural progenitor cells from subventricular zone, glucosamine increased the number of large neurospheres, along with enhancing mRNA levels of the proliferation markers Nestin, NeuroD1, and Sox2. Lastly, coronal brain sections containing the striatal region with subventricular zone showed increased number of BrdU positive cells and DCX positive cells, a marker for newly differentiating and immature neurons, in glucosamine-treated ischemic mice. Cumulatively, the results confirming neuroprotective, antineuroinflammatory, and proneurogenic effects of glucosamine enhance drug repurposing potential of glucosamine in cerebral ischemia.


Assuntos
Isquemia Encefálica , Células-Tronco Neurais , Animais , Isquemia Encefálica/tratamento farmacológico , Artéria Carótida Interna , Infarto Cerebral , Modelos Animais de Doenças , Glucosamina/farmacologia , Glucosamina/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia , Camundongos , Neurogênese
6.
Antioxid Redox Signal ; 37(1-3): 150-170, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34569265

RESUMO

Significance: Iron accumulation occurs in the central nervous system (CNS) in a variety of neurological conditions as diverse as spinal cord injury, stroke, multiple sclerosis, Parkinson's disease, and others. Iron is a redox-active metal that gives rise to damaging free radicals if its intracellular levels are not controlled or if it is not properly sequestered within cells. The accumulation of iron occurs due to dysregulation of mechanisms that control cellular iron homeostasis. Recent Advances: The molecular mechanisms that regulate cellular iron homeostasis have been revealed in much detail in the past three decades, and new advances continue to be made. Understanding which aspects of iron homeostasis are dysregulated in different conditions will provide insights into the causes of iron accumulation and iron-mediated tissue damage. Recent advances in iron-dependent lipid peroxidation leading to cell death, called ferroptosis, has provided useful insights that are highly relevant for the lipid-rich environment of the CNS. Critical Issues: This review examines the mechanisms that control normal cellular iron homeostasis, the dysregulation of these mechanisms in neurological disorders, and more recent work on how iron can induce tissue damage via ferroptosis. Future Directions: Quick and reliable tests are needed to determine if and when ferroptosis contributes to the pathogenesis of neurological disorders. In addition, there is need to develop better druggable agents to scavenge lipid radicals and reduce CNS damage for neurological conditions for which there are currently few effective treatments. Antioxid. Redox Signal. 37, 150-170.


Assuntos
Ferroptose , Doenças Neurodegenerativas , Sistema Nervoso Central/metabolismo , Homeostase , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Lipídeos
7.
J Neurosci ; 41(34): 7300-7313, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34272312

RESUMO

Iron is an essential cofactor for several metabolic processes, including the generation of ATP in mitochondria, which is required for axonal function and regeneration. However, it is not known how mitochondria in long axons, such as those in sciatic nerves, acquire iron in vivo Because of their close proximity to axons, Schwann cells are a likely source of iron for axonal mitochondria in the PNS. Here we demonstrate the critical role of iron in promoting neurite growth in vitro using iron chelation. We also show that Schwann cells express the molecular machinery to release iron, namely, the iron exporter, ferroportin (Fpn) and the ferroxidase ceruloplasmin (Cp). In Cp KO mice, Schwann cells accumulate iron because Fpn requires to partner with Cp to export iron. Axons and Schwann cells also express the iron importer transferrin receptor 1 (TfR1), indicating their ability for iron uptake. In teased nerve fibers, Fpn and TfR1 are predominantly localized at the nodes of Ranvier and Schmidt-Lanterman incisures, axonal sites that are in close contact with Schwann cell cytoplasm. We also show that lack of iron export from Schwann cells in Cp KO mice reduces mitochondrial iron in axons as detected by reduction in mitochondrial ferritin, affects localization of axonal mitochondria at the nodes of Ranvier and Schmidt-Lanterman incisures, and impairs axonal regeneration following sciatic nerve injury. These finding suggest that Schwann cells contribute to the delivery of iron to axonal mitochondria, required for proper nerve repair.SIGNIFICANCE STATEMENT This work addresses how and where mitochondria in long axons in peripheral nerves acquire iron. We show that Schwann cells are a likely source as they express the molecular machinery to import iron (transferrin receptor 1), and to export iron (ferroportin and ceruloplasmin [Cp]) to the axonal compartment at the nodes of Ranvier and Schmidt-Lanterman incisures. Cp KO mice, which cannot export iron from Schwann cells, show reduced iron content in axonal mitochondria, along with increased localization of axonal mitochondria at Schmidt-Lanterman incisures and nodes of Ranvier, and impaired sciatic nerve regeneration. Iron chelation in vitro also drastically reduces neurite growth. These data suggest that Schwann cells are likely to contribute iron to axonal mitochondria needed for axon growth and regeneration.


Assuntos
Axônios/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Neuropatia Ciática/fisiopatologia , Animais , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Ceruloplasmina/deficiência , Ceruloplasmina/metabolismo , Feminino , Gânglios Espinais/citologia , Quelantes de Ferro/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Crescimento Neuronal , RNA/biossíntese , Nós Neurofibrosos/metabolismo , Receptores da Transferrina/metabolismo , Nervo Isquiático/citologia , Nervo Isquiático/fisiologia , Células Receptoras Sensoriais/fisiologia , Transcrição Gênica
8.
Biomed Mater ; 16(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33657534

RESUMO

Critical limb ischemia (CLI) is a severe type of peripheral artery disease (PAD) which occurs due to an inadequate supply of blood to the limb extremities. Patients with CLI often suffer from extreme cramping pain, impaired wound healing, immobility, cardiovascular complications, amputation of the affected limb and even death. The conventional therapy for treating CLI includes surgical revascularization as well as restoration of angiogenesis using growth factor therapy. However, surgical revascularization is only suitable for a small percentage of CLI patients and is associated with a high perioperative mortality rate. The use of growth factors is also limited in terms of their poor therapeutic angiogenic potential, as observed in earlier clinical studies which could be attributed to their poor bio-availability and non-specificity issues. Therefore, to overcome the aforesaid disadvantages of conventional strategies there is an urgent need for the advancement of new alternative therapeutic biomaterials to treat CLI. In the past few decades, various research groups, including ours, have been involved in developing different pro-angiogenic nanomaterials. Among these, zinc oxide nanoflowers (ZONFs), established in our laboratory, are considered one of the more potent nanoparticles for inducing therapeutic angiogenesis. In our earlier studies we showed that ZONFs promote angiogenesis by inducing the formation of reactive oxygen species and nitric oxide (NO) as well as activating Akt/MAPK/eNOS cell signaling pathways in endothelial cells. Recently, we have also reported the therapeutic potential of ZONFs to treat cerebral ischemia through their neuritogenic and neuroprotective properties, exploiting angio-neural cross-talk. Considering the excellent pro-angiogenic properties of ZONFs and the importance of revascularization for the treatment of CLI, in the present study we comprehensively explore the therapeutic potential of ZONFs in a rat hind limb ischemia model (established by ligating the hind limb femoral artery), an animal model that mimics CLI in humans. The behavioral studies, laser Doppler perfusion imaging, histopathology and immunofluorescence as well as estimation of serum NO level showed that the administration of ZONFs could ameliorate ischemia in rats at a faster rate by promoting therapeutic angiogenesis to the ischemic sites. Altogether, the present study offers an alternative nanomedicine approach employing ZONFs for the treatment of PADs.


Assuntos
Óxido de Zinco , Animais , Células Endoteliais/metabolismo , Extremidades/irrigação sanguínea , Humanos , Isquemia/patologia , Neovascularização Patológica , Neovascularização Fisiológica , Ratos
9.
J Neurosci ; 40(48): 9327-9341, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33106352

RESUMO

Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS. Cuprizone (CZ), a copper chelator, is widely used to study demyelination and remyelination in the CNS, in the context of MS. However, the mechanisms underlying oligodendrocyte (OL) cell loss and demyelination are not known. As copper-containing enzymes play important roles in iron homeostasis and controlling oxidative stress, we examined whether chelating copper leads to disruption of molecules involved in iron homeostasis that can trigger iron-mediated OL loss. We show that giving mice (male) CZ in the diet induces rapid loss of OL in the corpus callosum by 2 d, accompanied by expression of several markers for ferroptosis, a relatively newly described form of iron-mediated cell death. In ferroptosis, iron-mediated free radicals trigger lipid peroxidation under conditions of glutathione insufficiency, and a reduced capacity to repair lipid damage. This was further confirmed using a small-molecule inhibitor of ferroptosis that prevents CZ-induced loss of OL and demyelination, providing clear evidence of a copper-iron connection in CZ-induced neurotoxicity. This work has wider implications for disorders, such as multiple sclerosis and CNS injury.SIGNIFICANCE STATEMENT Cuprizone (CZ) is a copper chelator that induces demyelination. Although it is a widely used model to study demyelination and remyelination in the context of multiple sclerosis, the mechanisms mediating demyelination is not fully understood. This study shows, for the first time, that CZ induces demyelination via ferroptosis-mediated rapid loss of oligodendrocytes. This work shows that chelating copper with CZ leads to the expression of molecules that rapidly mobilize iron from ferritin (an iron storage protein), that triggers iron-mediated lipid peroxidation and oligodendrocyte loss (via ferroptosis). Such rapid mobilization of iron from cellular stores may also play a role in cell death in other neurologic conditions.


Assuntos
Quelantes/toxicidade , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/fisiopatologia , Ferroptose/fisiologia , Oligodendroglia/efeitos dos fármacos , Animais , Corpo Caloso/fisiopatologia , Cicloexilaminas/farmacologia , Ferritinas/metabolismo , Ferroptose/efeitos dos fármacos , Radicais Livres/metabolismo , Glutationa/deficiência , Homeostase , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fenilenodiaminas/farmacologia , Remielinização
10.
Bioconjug Chem ; 31(3): 895-906, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32050064

RESUMO

Neuritogenesis, a complex process of the sprouting of neurites, plays a vital role in the structural and functional restoration of cerebral ischemia-injured neuronal tissue. Practically, there is no effective long-term treatment strategy for cerebral ischemia in clinical practice to date due to several limitations of conventional therapies, facilitating the urgency to develop new alternative therapeutic approaches. Herein, for the first time we report that pro-angiogenic nanomaterials, zinc oxide nanoflowers (ZONF), exhibit neuritogenic activity by elevating mRNA expression of different neurotrophins, following PI3K/Akt-MAPK/ERK signaling pathways. Further, ZONF administration to global cerebral ischemia-induced Fischer rats shows improved neurobehavior and enhanced synaptic plasticity of neurons via upregulation of Neurabin-2 and NT-3, revealing their neuroprotective activity. Altogether, this study offers the basis for exploitation of angio-neural cross talk of other pro-angiogenic nano/biomaterials for future advancement of alternative treatment strategies for cerebral ischemia, where neuritogenesis and neural repair are highly critical.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Nanoestruturas/química , Neuritos/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular , Modelos Animais de Doenças , Neuritos/patologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Peixe-Zebra , Óxido de Zinco/uso terapêutico
11.
PLoS Biol ; 16(10): e2005264, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30332405

RESUMO

Infiltrating monocyte-derived macrophages (MDMs) and resident microglia dominate central nervous system (CNS) injury sites. Differential roles for these cell populations after injury are beginning to be uncovered. Here, we show evidence that MDMs and microglia directly communicate with one another and differentially modulate each other's functions. Importantly, microglia-mediated phagocytosis and inflammation are suppressed by infiltrating macrophages. In the context of spinal cord injury (SCI), preventing such communication increases microglial activation and worsens functional recovery. We suggest that macrophages entering the CNS provide a regulatory mechanism that controls acute and long-term microglia-mediated inflammation, which may drive damage in a variety of CNS conditions.


Assuntos
Macrófagos/fisiologia , Microglia/fisiologia , Traumatismos da Medula Espinal/imunologia , Adulto , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/lesões , Feminino , Voluntários Saudáveis , Humanos , Inflamação/imunologia , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Monócitos , Fagocitose , Recuperação de Função Fisiológica
12.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 152-164, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664837

RESUMO

Cerebral ischemic stroke is one of the leading causes of death and disability worldwide. Therapeutic interventions to minimize ischemia-induced neural damage are limited due to poor understanding of molecular mechanisms mediating complex pathophysiology in stroke. Recently, epigenetic mechanisms mostly histone lysine (K) acetylation and deacetylation have been implicated in ischemic brain damage and have expanded the dimensions of potential therapeutic intervention to the systemic/local administration of histone deacetylase inhibitors. However, the role of other epigenetic mechanisms such as histone lysine methylation and demethylation in stroke-induced damage and subsequent recovery process is elusive. Here, we established an Internal Carotid Artery Occlusion (ICAO) model in CD1 mouse that resulted in mild to moderate level of ischemic damage to the striatum, as suggested by magnetic resonance imaging (MRI), TUNEL and histopathological staining along with an evaluation of neurological deficit score (NDS), grip strength and rotarod performance. The molecular investigations show dysregulation of a number of histone lysine methylases (KMTs) and few of histone lysine demethylases (KDMs) post-ICAO with significant global attenuation in the transcriptionally repressive epigenetic mark H3K9me2 in the striatum. Administration of Dimethyloxalylglycine (DMOG), an inhibitor of KDM4 or JMJD2 class of histone lysine demethylases, significantly ameliorated stroke-induced NDS by restoring perturbed H3K9me2 levels in the ischemia-affected striatum. Overall, these results highlight the novel role of epigenetic regulatory mechanisms controlling the epigenetic mark H3K9me2 in mediating the stroke-induced striatal damage and subsequent repair following mild to moderate cerebral ischemia.


Assuntos
Isquemia Encefálica/genética , Epigênese Genética , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina/genética , Aminoácidos Dicarboxílicos/farmacologia , Aminoácidos Dicarboxílicos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Morte Celular/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Desmetilação/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Masculino , Metilação/efeitos dos fármacos , Camundongos
13.
J Ethnopharmacol ; 197: 147-156, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-27457696

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cerebral ischemic stroke is one of the leading causes of death and long-term disability worldwide. Unfortunately, due to the failure of most of drugs in clinical trials recently, attentions have moved towards the traditional system of medicines including Ayurveda. In Ayurveda, Sameerpannag Ras (SR) is a mineral and metallic origin based formulation which has been used for the treatment of arthritis and chronic systematic inflammatory disorder. The current study was designed to investigate the neuroprotective effects of Sameerpannag Ras Mixture (SRM), on the neurobehavioral dysfunction and associated neuroinflammation, induced by transient Internal Carotid Artery Occlusion (ICAO) in mice model. MATERIALS AND METHODS: In the present study, mice were treated with Sameerpannag Ras Mixture (SRM) at the dose of 40mg/kg body weight by oral gavages for 3 and 7days respectively, twice a day, after the induction of ICAO for 90min followed by reperfusion. The efficacy of SRM was examined by scoring neurological behavioral deficit using the standard neurological deficit score (NDS), grip strength and rotarod performance tests at different time intervals of post-ICAO. RESULTS: Post-ischemic treatment with Sameerpannag Ras Mixture (SRM) at 40mg/kg significantly reduced Neurological Deficit Score and improved the motor coordination at different time intervals post-ICAO. The analysis of RT-qPCR data showed that transient cerebral ischemia could induce the inflammatory response genes in the affected striatal region of ICAO group, as compared to sham group, on day3 and day7 post-ICAO. Interestingly, SRM treatment showed marked improvement in the ischemia-induced neurobehavioral deficits by attenuating ischemia-induced neuroinflammatory response at both gene and protein level. CONCLUSION: The present study suggests that Sameerpannag Ras Mixture (SRM) treatment ameliorates behavioral outcomes after mild ischemia through the suppression of a number of inflammatory response genes involved in neuronal damage. This is the first report of the molecular mechanism underlying the significant neuroprotective action of the Ayurvedic drug, Sameerpannag Ras Mixture (SRM), using a mild stroke in mice model.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/tratamento farmacológico , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Ayurveda , Camundongos , Minerais/farmacologia , Fármacos Neuroprotetores/química , Preparações de Plantas/química , Acidente Vascular Cerebral/tratamento farmacológico
14.
Curr Neuropharmacol ; 15(6): 815-830, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27964703

RESUMO

BACKGROUND: Understanding the complexities associated with the ischemic condition and identifying therapeutic targets in ischemia is a continued challenge in stroke biology. Emerging evidence reveals the potential involvement of epigenetic mechanisms in the incident and outcome of stroke, suggesting novel therapeutic options of targeting different molecules related to epigenetic regulation. OBJECTIVE: This review summarizes our current understanding of ischemic pathophysiology, describes various in vivo and in vitro models of ischemia, and examines epigenetic modifications associated with the ischemic condition. METHOD: We focus on microRNAs, DNA methylation, and histone modifying enzymes, and present how epigenetic studies are revealing novel drug target candidates in stroke. CONCLUSION: Finally, we discuss emerging approaches for the prevention and treatment of stroke and post-stroke effects using pharmacological interventions with a wide therapeutic window.


Assuntos
Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Epigênese Genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Acidente Vascular Cerebral/tratamento farmacológico
15.
J Biosci ; 41(3): 407-17, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27581932

RESUMO

Hyperglycaemia in diabetes is either caused by reduced availability of insulin (type 1 diabetes, T1D) or insulin resistance to the cells (type 2 diabetes, T2D). In recent years, the prevalence of T2D has increased to an alarming proportion, encompassing 95 percent of the total diabetic burden, probably due to economy-driven changes in lifestyle. Recent epidemiological studies show comorbid depression, anxiety and related mental illness. To explore the molecular mechanisms underlying this comorbid conditions, we used Sprague-Dawley rats on high-fructose diet for 8 weeks to induce prediabetic condition. Rats with this metabolic syndrome also showed hyper-anxiety when they were subjected to anxiety-related behavioural assays. Rats were administered with resveratrol, an activator of sirtuins, and metformin, a standard antidiabetic drug, simultaneously with fructose. We observed that resveratrol was more effective in protecting from both the metabolic (prediabetic) and affective (anxiety) disorders than metformin. Molecular studies showed that recovery was associated with the upregulation of few nuclear sirtuins that act epigenetically - Sirt 1 and 7, which were significantly attenuated in the striatum of prediabetic rats. In conclusion, our study showed that hyper-anxiety associated with prediabetic condition is ameliorated by resveratrol through modulation of sirtuins, which is more or less similar to metformin.


Assuntos
Transtornos de Ansiedade/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Sirtuína 1/genética , Sirtuínas/genética , Animais , Antioxidantes/administração & dosagem , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/patologia , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Dieta/efeitos adversos , Epigênese Genética/genética , Frutose/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/genética , Hiperglicemia/patologia , Hipoglicemiantes/administração & dosagem , Insulina/genética , Resistência à Insulina/genética , Metformina/administração & dosagem , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/genética , Estado Pré-Diabético/patologia , Ratos , Resveratrol , Sirtuína 1/biossíntese , Sirtuínas/biossíntese , Estilbenos/administração & dosagem
17.
Sci Rep ; 5: 14134, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26388493

RESUMO

In search for drugs to treat neuropsychiatric disorders wherein neurotrophic and neurogenic properties are affected, two neurotrophically active small molecules specially crafted following natural product leads based on 2-oxa-spiro[5.5]-undecane scaffold, have been thoroughly evaluated for their neurotrophic, neurogenic and neuroprotective potential in ex vivo primary culture and in vivo zebrafish and mouse models. The outcome of in vivo investigations suggest that one of these molecules is more neurotrophic than neurogenic while the other one is more neurogenic than neurotrophic and the former exhibits remarkable neuroprotection in a mouse acute ischemic stroke model. The molecular mechanisms of action of these compounds appear to be through the TrkB-MEK-ERK-CREB-BDNF pathway as pre-treatment with neurotrophin receptor TrkB inhibitor ANA-12 and MEK inhibitor PD98059 attenuates the neurotrophic action of compounds.


Assuntos
Transtornos Mentais/tratamento farmacológico , Fatores de Crescimento Neural/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Azepinas/farmacologia , Benzamidas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Descoberta de Drogas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Transtornos Mentais/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/antagonistas & inibidores , Doenças Neurodegenerativas/prevenção & controle , Neurônios/metabolismo , Fármacos Neuroprotetores/antagonistas & inibidores , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA